ALAGAPPA UNIVERSITY DEPARTMENT OF BIOTECHNOLOGY

Karaikudi-630003, Tamil Nadu.

REGULATIONSANDSYLLABUS-(CBCS-University Department)

[ForthecandidatesadmittedfromtheAcademicYear2022 - 2023onwards] Name of

the Department: Department of Biotechnology

Name of the Subject Discipline: Biotechnology

Programme of Level: **M.Sc.**, Duration for the Course: Full Time (Two Years)

1. Choice-Based Credit System

A choice-Based Credit System is a flexible system of learning. This system allows students to gain knowledge at their own tempo. Students shall decide on electives from a wide range of elective courses offered by the University Departments in consultation with the Department committee. Students undergo additional courses and acquire more than the required number of credits. They can also adopt an inter-disciplinary and intra-disciplinary approach to learning, and make the best use of the expertise of available faculty.

2. Programme

"Programme" means a course of study leading to the award of a degree in a discipline.

3. Courses

"Course" is a component (apaper) of a programme. Each course offered by the Department is identified by a unique course code. A course contains lectures/ tutorials/laboratory work/seminar/project work / practical training/report writing /Viva-voce, etcora combination of these, to meet effectively the teaching and learning needs.

4. Credits

The Term "Credit" refers to the weightage given to a course, usually in relation to the instructional hours assigned to it. Normally in each of the courses credits will be assigned on the basis of the number of lectures/tutorials/laboratory and other forms of learning required to complete the course contents in a 15-week schedule. One credit is equal to one hour of lecture per week. For laboratory/field work one credit is equal to two hours.

5. Semesters

An Academic year is divided into two **Semesters.** In each semester, courses are offered in 15 teaching weeks and the remaining 5 weeks are to be utilized for conduct of examination and evaluation purposes. Each week has 30 working hours spread over 5 days a week.

6. Departmental committee

The Departmental Committee consists of the faculty of the Department. The Departmental Committee shall be responsible for admission to all the programmes offered by the Department including the conduct of entrance tests, verification of records, admission, and evaluation. The Departmental Committee determine the deliberation of courses and specifies the allocation of credits semester-wise and course-wise. For each course, it will also identify the number of credits for lectures, tutorials, practicals, seminars etc. The courses (Core/Discipline Specific Elective/Non-Major Elective) are designed by teachers and approved by the Departmental Committees. Courses approved by the Departmental Committees shall be approved by the Board of Studies. A teacher offering a course will also be responsible for maintaining attendance and performance sheets (CIA -I, CIA-II, assignments and seminar) of all the students registered for the course. The Non-major elective programme and MOOCs coordinator are responsible for submitting the performance sheet to the Head of the department. The Head of the Department consolidates all such performance sheets of courses pertaining to the programmes offered by the department. Then forward the same to be Controller of Examinations.

PEO-1	To enable the students to acquire knowledge on the fundamental aspects of Biotechnology such as Biochemistry, Cell Biology, Microbiology and
	Molecular Biology
PEO-2	To inculcate knowledge to the students with recent advancements and
	developments in the fields of Genomics, Proteomics, Genetic Engineering,
	Bioinformatics, Gene therapy, Cell Culture, modern drug discovery and
	Pharmaco genomics approaches
PEO-3	Augmentationofproblem-solvingskillsofstudentsthroughindustry-oriented
	training programs at various levels
PEO-4	Mouldingthegraduatestoeffectivelydisseminateformalscientificwritten
	communications and deliver oral presentation
PEO-5	To supplement the academic input of students by periodically conducting
	seminars, conferences, guest lectures, work shops, publications of papers,
	Books and so on
PEO-6	TofacilitatethemtounderstandtheadvancedconceptsofBiotechnologyso that the
	students can take up any challenging career in this field

7. Programme Educational Objectives- (PGO)Minimum6objectivesare required

8. Programme Specific Objectives-(PSO)-Minimum6objectivesare required

To impart basic knowledge in Cellular Molecular Biology, rDNA
Technology, Immunobiology and Genetics
To introduce students to developments/advances made in field of microbial technology, IPR, Biosafety and Bioethics, Pharmaco genomics for use in Human welfare and solving problems of the society
To describe fundamental molecular principles of genetic mapping and gene expression
To Differentiate and understand immune responses in relation to infection
And to understand importance of conventional and new emerging
technologies such as vaccination technology
To gain hands-on experience in gene cloning, protein expression and purification
To improve presentation skills by conducting seminars
To prepare Scientific writing skills for future career

9. ProgrammeOutcome-(PO)- Minimum6objectivesare required

PO-1	To enrich the students with solid fundamentals advanced technologies
PO-2	Apply skills and knowledge gained will be useful in solving problems typical Of bio industries and research
PO-3	Improve the skills of investigation, designing and conduct experiments, analyzing and interpreting data, and apply the laboratory skills to solve problems/driven hypothesis
PO-4	To provide hands on skills in industry and/or institutes wherever necessary
PO-5	To enable the candidates to employ the acquired theoretical knowledge
PO-6	To enrich the students with solid fundamentals of modern biology and advanced technologies
PO-7	Appreciate their relevance for investigating specific contemporary biological questions

10. Eligibility for admission

To be able to pursue M.Sc. Biotechnology, the candidate must have passed Bachelor"s degree in any branch of Science (Biotechnology, Microbiology, Zoology, Botany and Biochemistry) /Agriculture/Pharmacy/Veterinary/Engineering/Medicine (MBBS)/Medical Lab Technology/Nursing with a minimum of 50% marks

11. Medium of instruction

English

12. Minimum Duration of programme

The programme is for a period of two years. Each year shall consist of two semesters viz. Odd and Even semesters. Odd semesters shall be from June / July to October / November and even semesters shall be from November / December to April / May. Each semester there shall be 90 working days consisting of 6 teaching hours per working day (5 days/week).

13. Components

A PG programme consists of a number of courses. The term "course" is applied to indicate a logical part of the subject matter of the programme and is invariably equivalent to the subject matter of a "paper" in the conventional sense. The following are the various categories of the courses suggested for the PG programmes:

- A. Core courses (CC)- "Core Papers" means "the core courses" related to the programme concerned including practicals and project work offered under the programme and shall cover Core competency, critical thinking, analytical reasoning, and research skill.
- **B.** Discipline-specific electives (DSE) means the courses offered under the programme related to the major but are to be selected by the students, and shall cover additional academic knowledge, critical thinking, and analytical reasoning.
- C. Projects/Dissertation (Maximum Marks: 200)

The student shall undertake the Project/Dissertation during the fourth semester.

Project/Dissertation

The candidate shall undergo Project/Dissertation Work during the final semester. The candidate should prepare a scheme of work for the dissertation/project and should get approval from the guide. The candidate, after completing the dissertation /project work, shall be allowed to submit it to the university departments at the end of the final semester.

If the candidate is desirous of availing the facility from other departments/ universities/ laboratories/ organizations they will be permitted only after getting approval from the guide and HOD. In such a case, the candidate shall acknowledge the same in their dissertation/project work.

> Format to be followed for dissertation/project report

The format/certificate for thesis to be followed by the student are given below

- ➤ Title page
- > Certificate
- Acknowledgment
- ➢ Contentas follows:

ChapterNo	Title	Page number	
1	Introduction		
2	Aim and objectives		
3	Review of literature		
4	Materials and methods		
5	Result		
6	Discussion		
7	Summary		
8	References		

> Format of the title page

Title of Dissertation/Project work

Dissertation submitted in partial fulfillment of the requirement for the degree of MasterofSciencein<u>Biotechnology</u>totheAlagappaUniversity,Karaikudi-630003.

By

(Student Name) (RegisterNumber) University Logo DepartmentofBiotechnology

Alagappa University

(AStateUniversityAccreditedwith "A+" gradebyNAAC(CGPA: 3.64) in the Third Cycle and Graded as Category-I University by MHRD-UGC, 2019: QS ASIA Rank- 216, QS BRICS Rank-104, QS India Rank-20)

Karaikudi-630003

(Year)

> Format of certificates-

Certificate-Guide

Place: Karaikudi

Research Supervisor

Date:

Certificate-(HOD)

Place: Karaikudi

Head of the Department

Date:

Declaration (student)

Place: Karaikudi

(-----)

Date:

<u>Internship</u>

The students shall undergo Internship / industrial training in the reputed organizations for minimum of two weeks to acquire industrial knowledge during the summer vacation of second semester. The students have to find industry related to their discipline (Public limited/Private Limited/owner/NGOs etc.,) in consultation with the faculty in charge/Mentor and get approval from the Head of the Department and Departmental Committee before going for an internship / industrial training.

Format to be followed for Internship report

The format for internship report to be followed by the student are given below

Promat of the title page

Title of internship report

Internship report submitted in partial fulfillment of the requirement for the Master of Science in Biotechnology to the Alagappa University, Karaikudi -630003.

By

(Student Name)

(Register Number)

University Logo

Department of Biotechnology Alagappa University

(A State University Accredited with "A+"grade byNAAC(CGPA:3.64)in the Third Cycle and Graded as Category-I University by MHRD-UGC, 2019: QS ASIA Rank-216, QS BRICS Rank-104, QS India Rank-20) Karaikudi-630003

(Year)

Promat of certificate

(Faculty in-charge)

Place: Date:_____ **Research Supervisor**

(HOD)

This is to certify that the Internship report entitled "------" Submitted by Mr./Miss.-----" (Reg No:-----)to the Alagappa University, in partial fulfillment for the award of the Master of Science in Biotechnology is a bonafide record of Internship report done under the supervision of ------Professor/Assistant Professor, Department of Biotechnology, Alagappa University and the work carried out by him/her in the organization M/S---------. This is to further certify that the thesis or any part thereof has not formed the basis of the award to the student of any degree, diploma, fellowship, or any other similar title of any University or Institution.

Place: Karaikudi

Head of the Department

Date:

(Company supervisor or Head of the Organization)

Place:	Supervisor or Incharge
Date:	

Declaration (student)

I hereby declare that the Internship Report entitled "------" Submitted to the Alagappa University for the award of the Master of Science in Biotechnology has been carried out by me under the supervision of -------, Assistant Professor, Department of Biotechnology, Alagappa University, Karaikudi – 630 003. Thisis my original and independent work carried out by me in the organization M/S--------- for the period of ------ and has not previously formed the basis of the award of any degree, diploma, associateship, fellowship, or any other similar title of any University or Institution.

Place:Karaikudi Date: (-----)

- ➢ Acknowledgment
- ➤ Content as follows:

Chapter No.	Title	PageNo.
1	Introductions	
2	Aim and objectives	
3	Organisation profile/ details	
4	Methods/ Work	
5	Observation and knowledge gained	
6	Summary and outcome of the Internship study	
7	References	

<u>Field Visit</u>

The students shall undergo Field Visits to various aquaculture farms, fish landing centers, sea food processing industries, Research Institutes, ship building industries etc. to acquire industrial and practical knowledge during the first semester.

Format to be followed for Field Visit report

The format for Field Visit report to be followed by the student are given below **PFormat of the title page**

Field Visit report

Submitted in partial fulfilment of the requirement for the Master of Science in Biotechnology to the Alagappa University, Karaikudi -630003.

By

(Student Name)

(Register Number)

University Logo

Department of Biotechnology

Alagappa University

(A State University Accredited with "A+"grade by NAAC(CGPA:3.64)in the Third Cycle and Graded as Category-I University by MHRD-UGC, 2019: QS ASIA Rank-216, QS BRICS Rank-104, QS India Rank-20)

Karaikudi-630003

(Year)

Promat of certificate

(HOD)

Place: Karaikudi

Head of the Department

Date:

Declaration (student)

I hereby declare that the Field Visit Report submitted to the Alagappa University for the award of the Master of Science in ______has been carried out by me. This is my original and independent work carried out by me during ------ and has not previously formed the basis of the award of any degree, diploma, associateship, fellowship, or any other similar title of any University or Institution.

Place:Karaikudi Date: (-----)

- > Acknowledgment
- Content as follows:

S. No.	Date	Field Visit	PageNo.	Signature
1				
2				
3				
4				
5				

> No.of copies of the dissertation/internship report

The candidate should prepare three copies of the dissertation report and submit the same for the evaluation of examiners. After evaluation, one copy will be retained in the department library, one copy will be retained by the guide and the student shall hold one copy. The candidate should prepare one copy of the field visit/internship report and submit the same for the evaluation of examiners

2. Teaching methods

- Classes will be takenusing advanced techniques such as smartclasses, powerpoint projection
- Therequirement/improvementinteachingwillbegatheredbyinteractingwith thestudentstime to time
- Individualstudent will betaken carebytheteachers forhands-on training sessions
- The theories will be correlated with the advanced improvement in the respective fields
- Recentresearcheswillbediscussed whichhelpthemtounderstandtheconceptbetter

3. Attendance

Students must have earned 75% of attendance in each course for appearing for the examination. Students who have earned 74% to 70% of attendance need to apply for condonation in the prescribed form with the prescribed fee. Students who have earned 69%

to 60% of attendance need to apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students who have below 60% of attendance are not eligible to appear for the End Semester Examination (ESE). They shall redo the semester(s) after completion of the programme

4. Examination

The examinations shall be conducted to assess (remembering, understanding, applying, analysing, evaluating, and creating) the knowledge required during the study. There shall be two systems of examinations viz., internal and external examinations. The internal examinations shall be conducted as Continuous Internal Assessment tests I and II(CIA Test I & II).

A. Internal Assessment

The internal assessment shall comprise a maximum of 25 marks for each subject. The following procedure shall be followed for awarding internal marks.

Total-25marks

Sr.No	Content	Marks
1	Average marks of two CIA test	15
3	Seminar/group discussion/quiz	5
4	Assignment/field trip report/case study report	5
	Total	25

Project/Dissertation-200 Marks(assessbyGuide/in-charge/HOD/Supervisor/External)

1	Two presentations(mid-term)	150Marks
2	Progress report	50Marks
	Total	200Marks

B. External Examination

Maximum75Marks

- □ There shall be examinations at the end of each semester, for odd semesters in the month of October / November; for even semesters in April / May.
- A candidate who does not pass the examination in any course(s) may be permitted to appear in such failed course(s) in the subsequent examinations to be held in October / November or April / May. However, candidates who have arrears in Practical shall be permitted to take their arrear Practical examination only along with Regular Practical examination in the respective semester.
- □ A candidate should get registered for the first-semester examination. If registration is not possible owing to a shortage of attendance beyond condonation limit/regulation prescribedORbelatedjoiningORonmedicalgrounds,thecandidatesarepermittedto move to the next semester. Such candidates shall re-do the missed semester after completion of the programme.
- For the Project Report/ Dissertation Work the maximum marks will be 200 marks for project report evaluation and Viva-Voce examination

Iviaz	AIIIIIII/ JIVIAIKS		
Section A	10questions.Allquestionscarryequal	10 x1 =10	10questions – 2 each
	marks. (Objective-type questions)	Marks	from every unit
Section B	5 questions Either / or type like 1.a (or)b. All questions carry equal marks	5 x5 =25	5questions–1each from every unit
Section C	5 questions Either / or type like 1.a (or)b. All questions carry equal marks	5 x8= 40	5question–Should cover all units

C. Scheme of External Examination (Question Paper Pattern)

5. Results

The results of all the examinations will be published through the Department where the student underwent the course as well as through University Website

6. Passing minimum

- A candidate shall be declared to have passed in each course if he/she secures not less than 40% marks in the End Semester Examinations and 40% marks in the Internal Assessmentandnotlessthan50%intheaggregate,takingContinuousassessment and End Semester Examinations marks together.
- □ The candidates not obtained 50% in the Internal Assessment are permitted to improve their Internal Assessment marks in the subsequent semesters (2 chances will be given)by writing the CIA tests and by submitting assignments.

- Candidates, who have secured the pass marks in the End-Semester Examination and in the CIA but failed to secure the aggregate minimum pass mark (E.S.E + C I.A), are permitted to improve their Internal Assessment mark in the following semester and/or in University examinations.
- A candidate shall be declared to have passed in the Project / Dissertation / Internship if he/she gets not less than 40% in each of the Project / Dissertation / Internship and Viva-Voceandnotlessthan50% in the aggregate of both the marks for Project/Dissertation / Internship Report and Viva-Voce.
- □ A candidate who gets less than 50% in the Project Report must resubmit the Project Report. Such candidates need to take again the Viva-Voce on the resubmitted Project.

7. Grading of the Courses

The following table gives the marks, Grade points, Letter Grades and classifications meant to indicate the overall academic performance of the candidate.

RANGEOF MARKS	GRADEPOINTS	LETTER GRADE	DESCRIPTION
90 -100	9.0 - 10.0	0	Outstanding
80 -89	8.0 - 8.9	D+	Excellent
75 -79	7.5 – 7.9	D	Distinction
70 -74	7.0 – 7.4	A+	VeryGood
60 -69	6.0 - 6.9	Α	Good
50 - 59	5.0 - 5.9	В	Average
00 -49	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

Conversion of Marks to Grade Points and Letter Grade (Performance in Paper/Course)

- a) Successful candidates passing the examinations and earning GPA between 9.0 and 10.0and marks from 90 – 100 shall be declared to have Outstanding (O).
- b) SuccessfulcandidatespassingtheexaminationsandearningGPAbetween8.0and8.9 and marks from 80 - 89 shall be declared to have Excellent (D+).
- c) SuccessfulcandidatespassingtheexaminationsandearningGPAbetween7.5–7.9 and marks from 75 - 79 shall be declared to have Distinction (D).
- d) SuccessfulcandidatespassingtheexaminationsandearningGPAbetween7.0–7.4 and marks from 70 - 74 shall be declared to have VeryGood (A+).

- e) SuccessfulcandidatespassingtheexaminationsandearningGPAbetween6.0–6.9 and marks from 60 69 shall be declared to have Good (A).
- f) SuccessfulcandidatespassingtheexaminationsandearningGPAbetween5.0–5.9 and marks from 50 - 59 shall be declared to have Average (B).
- g) Candidates earning GPAbetween0.0andmarksfrom00 49shall be declared to have Reappear (U).
- h) Absence from an examination shall not be taken as an attempt.

From the second semester onwards the total performance within a semester and continuous performance starting from the first semester are indicated respectively by Grade PointAverage (GPA) and Cumulative Grade Point Average (CGPA). These two are calculatedby the following formulate

$GRADEPOINTAVERAGE(GPA) = \Box_i C_i G_i / \Box_i C_i$

GPA=<u>Sum of the multiplication of Grade Points by the credits of the courses</u> Sum of the credits of the courses in a Semester

CGPA	Grade	Classification of Final Result
9.5 - 10.0	O +	First Class– Exemplary*
9.0and abovebut below9.5	0	
8.5andabovebut below9.0	D ++	First Class with Distinction*
8.0andabovebut below8.5	D+	
7.5andabovebut below8.0	D	
7.0andabovebut below7.5	A++	First Class
6.5andabovebut below7.0	A+	
6.0andabovebut below6.5	Α	
5.5andabovebut below6.0	B +	Second Class
5.0andabovebut below5.5	В	
0.0and abovebut below5.0	U	Re-appear

8. Classification of the final result

The final result of the candidate shall be based only on the CGPA earned by the candidate. Successful candidates passing the examinations and earning CGPA between 9.5and

10.0 shall be given Letter Grade (O+), those who earned CGPA between 9.0 and 9.4 shall be given Letter Grade (O) and declared to have First Class –Exemplary*.

- a) Successful candidates passing the examinations and earning CGPA between 7.5 and 7.9 shall be given Letter Grade (D), those who earned CGPA between 8.0 and 8.4 shall be given Letter Grade (D+), those who earned CGPA between 8.5 and 8.9 shall be given Letter Grade (D++) and declared to have First Class with Distinction*.
- b) Successful candidates passing the examinations and earning CGPA between 6.0 and 6.4 shall be given Letter Grade (A), those who earned CGPA between 6.5 and 6.9 shall be given Letter Grade (A+), those who earned CGPA between 7.0 and 7.4 shall be given Letter Grade (A++) and declared to have First Class.
- c) Successful candidates passing the examinations and earning CGPA between 5.0 and 5.4 shall be given Letter Grade (B), those who earned CGPA between 5.5 and 5.9 shall be given Letter Grade (B+) and declared to have passed in Second Class.
- i)CandidatesthosewhoearnedCGPAbetween0.0and4.9shallbegivenLetterGrade (U)and declared to have Re-appear.
- d) Absence from an examination shall not be taken as an attempt.

CUMULATIVEGRADEPOINTAVERAGE(CGPA) = $\Box_n \Box_i C_{ni} G_{ni} / \Box_n \Box_i C_{ni}$

CGPA=<u>SumofthemultiplicationofGradePointsbythecreditsoftheentireProgramme</u> Sum of the credits of the courses for the entire Programme

Where,,**Ci**["] is the Credit earned forCoursei in anysemester; ,,**Gi**["] is the Grade Point obtained by the student for Course i and, n["] refers to the semester in which such courses were credited.

CGPA (Cumulative Grade Point Average) = Average Grade Point of all the Courses passed starting from the first semester to the current semester.

Note:*Thecandidateswhohavepassedinthefirstappearanceandwithintheprescribed Semesters of the PG Programme are alone eligible for this classification.

9. Maximum duration of the completion of the programme

The maximum period for completion of M.Sc., in Biotechnology shall not exceed eight semesters continuing from the first semester.

Conferment of the Master's Degree

A candidate shall be eligible for the conferment of the Degree only after he/ she has earned the minimum required credits for the Programme prescribed there for (i.e. 90 credits). Programme).

10. Village Extension Programme

The Sivaganga and Ramnad districts are very backward districts where a majority of people Lives in poverty. Therural massise conomically and educationally backward. Thus the aim of the introduction of this Village Extension Programme is to extend out to reach environmental awareness, social activities, hygiene, and health to the rural people of this region. The students in their third semester have to visit anyone of the adopted villages within the jurisdiction of Alagappa University and can arrange various programs to educate the rural mass in the following areas for three day based on the theme. 1. Environmental awareness 2. Hygiene and Health. A minimum of two faculty members can accompany the students and guide them.

What to do after M.Sc.,

- ✓ Can pursue academic program like MS, M.Phil or Ph.D
- ✓ Can apply jobs in Research and Development companies and Industries
- ✓ Eligible to be Research Fellows/Lab Technician/Project assistant
- \checkmark Able to be an entrepreneur with a start-up research companies

Job and Career option for M.Sc.,

Being an inter disciplinary domain with a blend of biological sciences and engineering technology that incorporates an array of career options which includes,

- ✓ Biotechnology, Genetics, Molecular Biology, Cell Biology, Pharmacology etc.
- ✓ Biomedical/Biomechanical Engineer
- ✓ Bioprocess Engineer
- ✓ Clinical Research Related Jobs
- ✓ Clinical Data Analysts
- ✓ Bioinformatics
- ✓ Sales &Marketing-Biomedical Equipment

Employment Areas

- ✓ Drug and pharmaceutical research
- ✓ Public funded laboratories
- ✓ Chemicals
- ✓ Environment control
- ✓ Waste management
- ✓ Energy
- ✓ Food processing
- ✓ Bio-processing industries
- ✓ Clinical Research
- ✓ Agriculture Sector
- ✓ Biopharma companies
- ✓ Vaccination production centre
- ✓ Food quality control department

M.Sc., Biotechnology-Programme structure

SEMESTER I

S.	Code	Courses	Name of the Course	T/P	Credits	Ι	Marks	Total
No	Coue	Courses	Name of the Course	1/1		Int	Ext	
1	501101	Core	Biochemistry	Т	3	25	75	100
2	501102	Core	Cell and Molecular Biology	Т	3	25	75	100
3	501103	Core	Plant and Animal Biotechnology	T	3	25	75	100
4	501104	Core	Microbiology	Т	2	25	75	100
5	501105	Core	Genetics	Т	2	25	75	100
6	501106	DSE	Basics of Mathematics and Statistics	Т	2	25	75	100
7	501107	DSE	Basics of Chemistry and Physics	Т	2	25	75	100
8	501108	Core	Laboratory I: Biochemistry and	Р	4	25	75	100
			Analytical Techniques					
9	501109	Core	Laboratory II: Microbiology	P	2	25	75	100
10	501110	Core	Laboratory III: Plant and Animal	P	2	25	75	100
			Biotechnology					
			Т	otal	25	250	750	1000
SEN	IESTER	II						
S.	Cada	Common	Nome of the Course	T/P	Credits		Marks	Total
No	Code	Courses	Name of the Course			Int	Ext	
1	501201	Core	Genetic Engineering	Т	3	25	75	100
2	501202	Core	Immunology	Т	3	25	75	100
3	501203	Core	Bioinformatics	Т	3	25	75	100

2	501202	Core	Immunology	Т	3	25	75	100
3	501203	Core	Bioinformatics	Т	3	25	75	100
4	501204	Core	Genomics and Proteomics	Т	2	25	75	100
5	501205	Core	Molecular Diagnostics	Т	2	25	75	100
6	501206	Core	Research Methodology and Scientific Communication Skills	Т	2	25	75	100
7	501207	Core	Laboratory IV: Molecular Biology and Genetic Engineering	Р	4	25	75	100
8	501208	Core	Laboratory V: Immunology	P	3	25	75	100
9	501209		Seminar		1	30	20	50
10	501501	DSE	Elective II	Т	2	25	75	100
					25	255	695	950
				Fotal				

SEMESTERIII

S.	Code	Courses	Name of the Course	T/P	Credits	Μ	larks	Total
No	Code	Courses	Name of the Course	1/1		Int	Ext	
1	501301	Core	Bioprocess Engineering and Technology	T	3	25	75	100
2	501302	Core	Emerging Technologies	T	2	25	75	100
3	501303	Core	Critical Analysis of Classical Papers	Т	2	60	40	100
4	501304	Core	Bio entrepreneurship	Т	2	25	75	100
5	501305	Core	Intellectual Property Rights, Biosafety and Bioethics	Т	2	25	75	100
6	501306	Core	Project Proposal Preparation and Presentation	T	2	60	40	100
7	501307		Seminar		1	30	20	50
8	501308	Core	Laboratory VI: Bioprocess Engineering and Technology	Р	4	25	75	100
9	501309	Core	Laboratory VII: Bioinformatics	P	2	25	75	100
10	501502	DSE	Elective III		2	25	75	100
		•	Tota	Ì	22	325	625	950

SEMESTERIV

S.	Code	Courses	Name of the Course	Credits	Ν	Aarks	Total
No	Coue	Courses	Name of the Course		Int	Ext	
1	501410	Core	Dissertation	20	50	150	200
			Total	20	50	150	200
			Grand Total	92	880	2220	3100

Course Structure

M.Sc. Biotechnology

.No.	Title	Credit
	SEMESTERONE	
1	Biochemistry	3
2	Cell and Molecular Biology	3
3	Plant and Animal Biotechnology	3
4	Microbiology	2
5	Genetics	2
6	Basics of Mathematics and Statistics (Elective I)	2
7	Basics of Chemistry and Physics	2
8	Laboratory I: Biochemistry and Analytical Techniques	4
9	Laboratory II: Microbiology	2
10	Laboratory III: Plant and Animal Biotechnology	2
	TOTAL	25
	SEMESTERTWO	
1	Genetic Engineering	3
2	Immunology	3
3	Bioinformatics	3
4	Genomics and Proteomics	2
5	Molecular Diagnostics	2
6	Research Methodology and Scientific Communication Skills	2
7	Elective II	2
8	Seminar	1
9	Laboratory IV: Molecular Biology and Genetic Engineering	4
10	Laboratory V: Immunology	3
	TOTAL	25
	SEMESTERTHREE	
1	Bioprocess Engineering and Technology	3
2	Emerging Technologies	2
3	Critical Analysis of Classical Papers	2
4	Bio-entrepreneurship	2
5	Intellectual Property Rights, Biosafety and Bioethics	2
6	Project Proposal Preparation and Presentation	2
7	Seminar	1
8	Laboratory VI: Bioprocess Engineering and Technology	4
9	Laboratory VII: Bioinformatics	2
10	Elective III	2
	TOTAL	22
	SEMESTERFOUR	
1	Dissertation	20
	TOTAL	20

Recommended Electives:

1. Biological Imaging| 2. Computational Biology| 3. Drug Discovery and Development| 4. Environmental Biotechnology| 5. Microbial Technology| 6. Nanobiotechnology| 7. ProteinEngineering| 8. Vaccines

Semester One

Biochemistry

Course Objectives

The objectives of this course are to build upon undergraduate level knowledge of biochemical principles with specific emphasis on different metabolic pathways. The course shall make the students aware of various disease pathologies within the context of each topic.

Student Learning Outcomes On

completion of this course, students should be able to:

- Gain fundamental knowledge in biochemistry;
- Understand the molecular basis of various pathological conditions from the perspective of biochemical reactions.

		SEMESTER I			
Core	Course code: 501101	BIOCHEMISTRY	Т	Credits: 3	Hours: 41
Pre- requisite	Basic Knowledge in	Biochemistry	Syllabus	Revised	2022-23
		Unit I			
Objective 1	To build upon undergradua emphasis on different biom	e		*	th specific
composition o buffer, mainte trypsin and all	is of life: Miller-Urey expe f living matter; Water – propenance of blood pH and pH of caline phosphatase). Concept lation-reduction reactions.	erties of water, essential of gastric juice, pH op	role of wate tima of diffe	r for life on rent enzyme	earth. pH, s (pepsin,
Outcome 1	Gain fundamental knowled	ge in biochemistry			K1
		Unit II			
Objective 2	To make the students award topic.	e of various disease pat	hologies with	nin the conte	xt of each
Sugars - mono glycosylation of important r fluid mosaic n	- structure and functional gro o, di, and polysaccharides with of other biomolecules - glycon members of storage and mem- model, electrical properties of ort mechanisms (mediated an	ith specific reference to oproteins and glycolipio brane lipids; Structure membranes, membrane	glycogen, a ds; lipids - st of model me proteins (int	mylose and ructure and embrane: lip rinsic, extrir	cellulose, properties id bilayer,
Outcome 2	Understand the molecular the perspective of biochemi	basis of various patho	^	-	К2
		Unit III			
Objective 3	To understand the signif anabolic and catabolic path		•		des, their
specificity of temperature; 1 inhibition - t	zyme nomenclature and cla enzymes. Enzyme kinetics a Michaelis-Menten equation; ypes of inhibitors –reversit plications of enzymes in agric Acquire knowledge in the	and general properties Km and V max value ole and irreversible in culture, industry and the	of enzymes and their hibition. All rapy.	like the effe significance osteric and	ect of pH, . Enzyme feedback
5 4000 0	in day to day life.		P.0.9		К3

Unit IV	
To acquire knowledge in basic structure, function and mechanism of action, kinet inhibition and an exposure to the applications of the enzymes and future perspective	
High energy phosphate compounds –free energy of hydrolysis of Phosphoryland Acetyl-CoA. Oxidative phosphorylation, mitochondrial respiratory complex felectron carriers, electrochemical gradient, chemiosmotic theory, F1-F0 ATP Synthesis of ATP synthesis. Photosynthesis – Light dependent and independent reactions.	xes,
Analyze and understand the relationship between various cellular K4 pathways/mechanisms and the role of the intermediates in connecting several metabolism, fundamentals of energetics in biochemical process and the concepts of oxidative phosphorylation, electron transport, ATP synthesis and photosynthesis.	
Unit V	
Understand the synthesis and regulation of nucleotides	
citric acid cycle, citric acid cycle as a source of biosynthetic precursors; Lipids (f and biosynthesis). Amino acids biosynthesis, nucleotides (de novo synthesis ys).	atty
nucleotides takes place in a cell and also understand the deficiency and k4 disorders of these biomolecules.	
	K5-
 Suggested Readings: Stryer, L. (2015). <i>Biochemistry</i>. (8th ed.) New York: Freeman. Lehninger, A. L. (2012). <i>Principles of Biochemistry</i> (6th ed.). New Yor NY: Worth. Voet, D., &Voet, J. G. (2016). <i>Biochemistry</i> (5th ed.). Hoboken, NJ: J. W & Sons. Dobson, C. M. (2003). <i>Protein Folding and Misfolding</i>. Nature, 426(69) 884-890. doi:10.1038/nature02261. Richards, F. M. (1991). <i>The Protein Folding Problem</i>. Scientific America 264(1), 54-63. doi:10.1038/scientificamerican0191-54. Online Resources: 	7iley 68),
	To acquire knowledge in basic structure, function and mechanism of action, kine inhibition and an exposure to the applications of the enzymes and future perspectiv High energy phosphate compounds –free energy of hydrolysis of Phosphoryla d Acetyl-CoA. Oxidative phosphorylation, mitochondrial respiratory comple electron carriers, electrochemical gradient, chemiosmotic theory, F1-F0 ATP Synth of ATP synthesis. Photosynthesis – Light dependent and independent reactions. Analyze and understand the relationship between various cellular pathways/mechanisms and the role of the intermediates in connecting several metabolism, fundamentals of energetics in biochemical process and the concepts of oxidative phosphorylation, electron transport, ATP synthesis and photosynthesis. Unit V Understand the synthesis and regulation of nucleotides carbohydrates (glycolysis; gluconeogenesis; pentose phosphate pathway). Citric a citric acid cycle, citric acid cycle as a source of biosynthetic precursors; Lipids (f and biosynthesis). Amino acids biosynthesis, nucleotides (de novo synthesis ys). Learn how metabolism of carbohydrates, lipids, amino acids and nucleotides takes place in a cell and also understand the deficiency and disorders of these biomolecules. ing/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Analyze, luate, K6 -Synthesis / Create Suggested Readings: • Stryer, L. (2015). <i>Biochemistry</i> . (8th ed.) New York: Freeman. • Lehninger, A. L. (2012). <i>Principles of Biochemistry</i> (6th ed.). New Y NY: Worth. • Voet, D., &Voet, J. G. (2016). <i>Biochemistry</i> (5th ed.). Hoboken, NJ: J. W & Sons. • Dobson, C. M. (2003). <i>Protein Folding and Misfolding</i> . Nature, 426(69 884-890. • doi:10.1038/nature02261. • Richards, F. M. (1991). <i>The Protein Folding Problem</i> . Scientific America • 264(1), 54-63. doi:10.1038/scientificamerican0191-54.

Course Outcome	Vs Programme	Outcome:
-----------------------	---------------------	-----------------

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	M (2)	M (2)	M (2)	M (2)	S (3)				
CO2	M (2)	S (3)	M (2)	S (3)	L (1)	S (3)				
CO3	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
CO4	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
CO5	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
W.AV:	2.8	2.2	2	2.8	1.9	3	3	3	3	3

*3 – Strong 2 –Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO2	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO3	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO4	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO5	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
W.AV:	3	3	3	3	3	3

Cell and Molecular Biology

Course Objectives

The objectives of this course are to sensitize the students to the fact that as we go down the scale of magnitude from cells to organelles to molecules, the understanding of various biological processes becomes deeper and inclusive.

Student Learning Outcomes

Student should be equipped to understand three fundamental aspects in biological phenomenon: a) what to seek; b) how to seek; c) why to seek?

		SEMESTER I			
Core	Course code: 501102	CELL AND MOLECULAR BIOLOGY	Т	Credits: 3	Hours: 40
Pre- requisite	e e	cellular function and ization	Syllab	us Revised	2022-23
		Unit I			
Objective 1	To gain in-depth to compartmentalization in	understanding of ce prokaryotic and eukaryo		cture, organ	elles, and
prokaryotic an related to com and Golgi app		nal organization of the ryotic cells; Intracellula osomes, Mitochondria, nes; Three-dimensiona	cell - cell r organelles Chloroplas Il organiza	membranes as : Endoplasmic ts; Nuclear co tion and fu	nd concepts c Reticulum ompartment:
Outcome 1	Students will possess membranes, and organel cellular processes, and disciplines.	les, interpreting their ro	les in genet	ic regulation,	K1
		Unit II			
Objective 2	To comprehend chromat expression; grasp transcr mechanisms.	-	-	-	-
assembly of recombination and –Erasers; Polymerases, transcriptional addition of c selective and siRNAs), pro codes, degende elongation an	rganization: Chromatin eukaryotic and prokar a; chromatin control: gene Transcriptional control: S promoters and enhance i initiation, elongation a ap and tail, mRNA flow specific mRNAs through tein translation machinery eracy of codons, Wobble d termination; co- and p poduct cleavage, modificatio	yotic DNA polymera transcription and silence Structure and assembly ers, transcription fact nd termination; post-tr through nuclear enve h interference by small y, ribosomes-composition hypothesis; Iso-accept post-translational modifi	ases, DNA of eukaryo ors as ac ranscription lope into c ll non-codin on and ass ing tRNA;	-replication, omatin- Write tic and proka tivators and al control: s cytoplasm, bro- ng RNAs (m embly; unive mechanism o	repair and rs, -Readers ryotic RNA repressors, plicing and eakdown of iRNAs and rsal genetic of initiation,

Outcome 2	Students will interpret chromatin dynamics, gene regulation,	
	transcription, and translation, linking them to cellular function, genetic	K2
	stability, and their significance in biomedical and research contexts	
	Unit III	
Objective 3	To understand molecular mechanisms of cellular and nuclear transport, intr	racellular
Ū	protein sorting, vesicular trafficking, and the cell cycle phases and checkpo	oints.
Cellular Tran	sport: Molecular mechanisms of membrane transport, nuclear transport, l	Intracellular
protein sorting	- Basis, Mechanism and Regulation of intracellular transport of proteins acro	oss nucleus,
mitochondria,	chloroplast, ER and Golgi apparatus; Intracellular vesicular traffic	king from
Endoplasmic	Reticulum through Golgi apparatus to lysosomes; Cell cycle: Different	ent phases,
regulation, and	checkpoints.	
Outcome 3	Students will interpret and apply knowledge of cellular transport	
	processes, organelle communication, and cell cycle regulation, with	K4
	implications for cellular function, disease, and research advancement.	
	Unit IV	
Objective 4	To learn the molecular events in plant cellular differentiation, and hormone	e-mediated
	regulation.	
Cellular diffe	rentiation in plants: Cellular differentiation in plants – Basic process & 1	mechanism.
Specific role o	f hormones as a regulator of cellular differentiation; Morphogenesis; Plan	nt cell wall-
Nature, compo	osition & organization. Organization of shoot & root apical meristem; sh	noot & root
development.		
Outcome 4	Students will interpret mechanisms of plant cellular differentiation, and	K4
	1 1. 0	114
	hormonal influences.	
	hormonal influences. Unit V	
Objective 5		ıy,
Objective 5	Unit V	-
	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger	s.
Biology of ba	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage : Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and	s. replication repression,
Biology of ba and phage pro Lysogeny and	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage : Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and prophage integration, prophage excision. Decision between lysis and	s. replication repression, l lysogeny.
Biology of ba and phage pro Lysogeny and Mutation - Cau	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage : Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem	s. replication repression, l lysogeny. ical, loss of
Biology of ba and phage pro Lysogeny and Mutation - Cau function, gain	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage : Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci	s. replication repression, l lysogeny. lical, loss of sion repair,
Biology of ba and phage pro Lysogeny and Mutation - Cau function, gain	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage : Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock r	s. replication repression, l lysogeny. lical, loss of sion repair,
Biology of ba and phage pro Lysogeny and Mutation - Cau function, gain recombinationa	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage : Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock re Students will interpret phage λ life cycles, understand mutation and	s. replication repression, l lysogeny. ical, loss of sion repair, esponse.
Biology of ba and phage pro Lysogeny and Mutation - Cau function, gain	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage : Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock r Students will interpret phage λ life cycles, understand mutation and repair processes, recognize cellular responses to stress, and connect these	s. replication repression, l lysogeny. lical, loss of sion repair,
Biology of bar and phage pro Lysogeny and Mutation - Cau function, gain recombinationa Outcome 5	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage : Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock re Students will interpret phage λ life cycles, understand mutation and repair processes, recognize cellular responses to stress, and connect these concepts to genetics, evolution, and biomedical applications	s. replication repression, l lysogeny. ical, loss of sion repair, esponse. K5
Biology of bac and phage pro Lysogeny and Mutation - Cau function, gain recombinationa Outcome 5 K1-Remember	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage : Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock re Students will interpret phage λ life cycles, understand mutation and repair processes, recognize cellular responses to stress, and connect these concepts to genetics, evolution, and biomedical applications ing/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Ana	s. replication repression, l lysogeny. ical, loss of sion repair, esponse. K5
Biology of bac and phage pro Lysogeny and Mutation - Cau function, gain recombinationa Outcome 5 K1-Remember	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage : Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock r Students will interpret phage λ life cycles, understand mutation and repair processes, recognize cellular responses to stress, and connect these concepts to genetics, evolution, and biomedical applications ting/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Ana aluate, K6 -Synthesis / Create	s. replication repression, l lysogeny. ical, loss of sion repair, esponse. K5
Biology of bac and phage pro Lysogeny and Mutation - Cau function, gain recombinationa Outcome 5 K1-Remember	Unit VTo understand bacteriophage λ biology, including lytic growth and lysogermutation causes and types, repair mechanisms, and cellular stress responsecteriophage: Biology of bacteriophage λ . Lytic growth of phage λ : DNAoduction, recombination in the λ life cycle. Lysogeny: Immunity andprophage integration, prophage excision. Decision between lysis andstore of function) and detection. Mechanism of repair- photoreactivation, excial repair. The SOS and adaptive responses and their regulation. Heat shock responses to stress, and connect theseconcepts to genetics, evolution, and biomedical applicationsring/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Anaaluate, K6-Synthesis / CreateSuggested Readings:	s. replication repression, l lysogeny. ical, loss of sion repair, esponse. K5 alyze, K5 -
Biology of bac and phage pro Lysogeny and Mutation - Cau function, gain recombinationa Outcome 5 K1-Remember	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage : Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock r Students will interpret phage λ life cycles, understand mutation and repair processes, recognize cellular responses to stress, and connect these concepts to genetics, evolution, and biomedical applications ing/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Ana aluate, K6 -Synthesis / Create Suggested Readings: • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., &	s. replication repression, l lysogeny. ical, loss of sion repair, esponse. K5 alyze, K5 -
Biology of bac and phage pro Lysogeny and Mutation - Cau function, gain recombinationa Outcome 5 K1-Remember	Unit VTo understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress responsecteriophage: Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and a prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock r Students will interpret phage λ life cycles, understand mutation and repair processes, recognize cellular responses to stress, and connect these concepts to genetics, evolution, and biomedical applications ting/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Ana aluate, K6-Synthesis / CreateSuggested Readings: • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & (2008).	s. replication repression, l lysogeny. ical, loss of sion repair, esponse. K5 alyze, K5 - Walter, P.
Biology of bac and phage pro Lysogeny and Mutation - Cau function, gain recombinationa Outcome 5 K1-Remember	 Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage: Biology of bacteriophage λ. Lytic growth of phage λ: DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock results will interpret phage λ life cycles, understand mutation and repair processes, recognize cellular responses to stress, and connect these concepts to genetics, evolution, and biomedical applications the students / K6-Synthesis / Create Suggested Readings: Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & (2008). Molecular Biology of the Cell (5th Ed.). New York: Garland 	s. replication repression, l lysogeny. ical, loss of sion repair, esponse. K5 alyze, K5 - Walter, P. l Science.
Biology of bac and phage pro Lysogeny and Mutation - Cau function, gain recombinationa Outcome 5 K1-Remember	Unit VTo understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress responsecteriophage: Biology of bacteriophage λ . Lytic growth of phage λ : DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and a prophage integration, prophage excision. Decision between lysis and uses (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock responses to genetics, evolution, and biomedical applications ting/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Ana aluate, K6-Synthesis / CreateSuggested Readings: • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & (2008). • Molecular Biology of the Cell (5th Ed.). New York: Garland • Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New	s. replication repression, l lysogeny. ical, loss of sion repair, esponse. K5 alyze, K5 - Walter, P. l Science.
Biology of bac and phage pro Lysogeny and Mutation - Cau function, gain recombinationa Outcome 5 K1-Remember	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage: Biology of bacteriophage λ. Lytic growth of phage λ: DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and l prophage integration, prophage excision. Decision between lysis and ises (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock responses to stress, recognize cellular responses to stress, and connect these concepts to genetics, evolution, and biomedical applications ting/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Ana aluate, K6-Synthesis / Create Suggested Readings: • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & (2008). • Molecular Biology of the Cell (5th Ed.). New York: Garland • Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New W.H. Freeman.	s. replication repression, l lysogeny. ical, loss of sion repair, esponse. K5 alyze, K5 - Walter, P. l Science. v York:
Biology of bac and phage pro Lysogeny and Mutation - Cau function, gain recombinationa Outcome 5 K1-Remember	 Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage: Biology of bacteriophage λ. Lytic growth of phage λ: DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and I prophage integration, prophage excision. Decision between lysis and ises (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock r Students will interpret phage λ life cycles, understand mutation and repair processes, recognize cellular responses to stress, and connect these concepts to genetics, evolution, and biomedical applications ting/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analuate, K6-Synthesis / Create Suggested Readings: Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & (2008). Molecular Biology of the Cell (5th Ed.). New York: Garland Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New W.H. Freeman. Krebs, J. E., Lewin, B., Kilpatrick, S. T., & Goldstein, E. S. 	s. replication repression, l lysogeny. iical, loss of sion repair, esponse. K5 alyze, K5 - Walter, P. l Science. v York: (2014).
Biology of bac and phage pro Lysogeny and Mutation - Cau function, gain recombinationa Outcome 5 K1-Remember	Unit V To understand bacteriophage λ biology, including lytic growth and lysoger mutation causes and types, repair mechanisms, and cellular stress response cteriophage: Biology of bacteriophage λ. Lytic growth of phage λ: DNA oduction, recombination in the λ life cycle. Lysogeny: Immunity and l prophage integration, prophage excision. Decision between lysis and ises (physical, chemical, and biological) Types (lethal, conditional, biochem of function) and detection. Mechanism of repair- photoreactivation, exci al repair. The SOS and adaptive responses and their regulation. Heat shock responses to stress, recognize cellular responses to stress, and connect these concepts to genetics, evolution, and biomedical applications ting/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Ana aluate, K6-Synthesis / Create Suggested Readings: • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & (2008). • Molecular Biology of the Cell (5th Ed.). New York: Garland • Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New W.H. Freeman.	s. replication repression, l lysogeny. iical, loss of sion repair, esponse. K5 alyze, K5 - Walter, P. l Science. v York: (2014). iing

Approach (6th Ed.). Washington: ASM; Sunderland.
• A Textbook of Human Genetics (2011) by Amita Sarkar, Wisdom
Hardin, J., Bertoni, G., Kleinsmith, L. J., & Becker, W. M. (2012).
Becker's World of the Cell. Boston (8th Ed.). Benjamin Cummings.
• Ray J. Rose Molecular Cell Biology of the Growth and Differentiation
of Plant Cells (2021) CRC Press ISBN: 9780367782917
• Molecular Biology of the Gene, 7th Edition (2014) by James D
Watson, Tania A Baker, Stephen P Bell, Alexander Gann, Michael
Levine and Richard Losick, Benjamin Cummings.
Online Resources:
World Wide Web Service and Open AI

Course Outcome VS Programme Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0
CO1	M (2)	M (2)	L (1)	M (2)	L (1)	M (2)	L (1)	S (3)	M (2)	L (1)
CO2	M (2)	L (1)	M (2)	M (2)	M (2)	M (2)	L (1)	M (2)	S (3)	M (2)
CO3	S (3)	M (2)	L (1)	L (1)	L (1)	L (1)	M (2)	M (2)	M (2)	L (1)
CO4	S (3)	L (1)	M (2)	L (1)	M (2)	L (1)	M (2)	M (2)	S (3)	L (1)
CO5	L (1)	M (2)	L (1)	L (1)	M (2)	L (1)				
W. AV	2.2	1.6	1.4	1.4	1.6	1.8	1.6	2.2	2.4	1.6

S –Strong (3), M-Medium (2), L- Low (1) Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S (3)	M (2)	L (1)	M(2)	L (1)
CO2	M (2)	L (1)	M (2)	M (2)	M (2)
CO3	M (2)	L (1)	M (2)	L (1)	M (2)
CO4	L (1)	M (2)	M (2)	S (3)	M (2)
CO5	L (1)	M (2)	M (2)	M (2)	M (2)
W. AV	1.8	1.6	1.8	2.0	1.8

Plant and Animal Biotechnology

Course Objectives

The objectives of this course are to introduce students to the principles, practices and application of animal biotechnology, plant tissue culture, plant and animal genomics, genetic transformation and molecular breeding of plants and animals. Student Learning Outcomes Students should be able to gain fundamental knowledge in animal and plant biotechnology and their applications.

		SEMESTER I									
Core	Course code: 501103	PLANT AND ANIMAL BIOTECHNOLOGY	Т	Credits: 3	Hours: 40						
Pre- requisite	Syllabus Revised 2022-23										
		Unit I									
Objective 1		f plant tissue culture tech molecular markers for get		*	esses,						
nutrients & j Cryopreservat applications;	yogenesis; Establishment plant hormones; Steriliza ion – Principle, Metho Plant cell tissue and or diversity conservation ar etic diversity.	ation techniques; Micro ds, and Applications; gan cultures for phytoe	propagation Synthetic s chemical p	n; Somaclona seed production roduction- Pr	l variation; on and its inciple and						
Outcome 1	micropropagation, cryo	proficiency in tissue an opreservation, and synt outilize molecular marke emical production.	hetic seed	production,	K1						
		Unit II									
Objective 2	To understand plant gen techniques.	etic engineering principle	es and vario	us gene transf	er						
formation; Ti and Binary Ti electroporation methods; Scr development of genes in plant	Plant genetic engineering: Agrobacterium tumefaciens & crown gall tumors. Basis of tumor formation; Ti and Ri plasmids; Mechanism of T-DNA transfer; Disarmed Ti plasmid; Co - integrate, and Binary Ti - plasmid based vectors for plant transformation; Direct gene transfer - PEG-mediated, electroporation, and particle bombardment, Microinjection, Microlaser and Silicon carbide whisker TM methods; Screenable and selectable markers; Genetic Engineering of chloroplast genome and development of transplastomic plants; Strategies for introducing biotic and abiotic stress responsive genes in plants; Molecular Farming – Polyhydroxy butyrate (PHB), Polyfructons & Cyclodextrans. Transgenic crops – Flavr Savr, Bt Cotton, and Golden rice.										
Outcome 2		he basics and mechan ll also recognize the sig			К3						

	Unit III	
Objective 3	Top gain an overview of plant and animal genomics, molecular mapping, n	narker-
Genome Initia	assisted selection and to explore animal reproductive biotechnology. mal Genomics: Overview of plant and animal genomics, definitions; Arabie tive; Molecular mapping and marker assisted selection; Animal reproductive and vaccinology	-
Outcome 3	Students will understand the foundations of plant and animal genomics, with insights into the marker-assisted selection. Graduates will also recognize the significance of animal reproductive biotechnology and its role in advancing vaccinology for animal health.	K4
	Unit IV	
Objective 4	To comprehend various methods of gene transfer - physical, chemical, and including recombinant animal viral vectors construction.	biological,
construction of (Mice, Cows, disease model therapeutic pro therapy - Ex vi	Methods of gene transfer- physical, chemical, and biological methods. Meth f recombinant animal viral vectors for gene transfer into cell lines. Transge Pigs, Sheep, Goat, Birds, fish, and Insects). Applications of transgenic s (neurodegenerative disorders, carcinogenesis, and hypertension) and pro- pteins. Cloning for conservation of endangered species; ethical issues in clo ivo and in vivo, viral, and non- viral	nic animals animals as oduction of
Outcome 4	Students will master techniques for gene transfer, transgenic animal creation, and applications in disease models and therapeutic protein production.	K4
	Unit V	
mammalian co suspension cul testing of toxic	To learn the methods of animal cell culture techniques and their application ulture: Brief history of animal cell culture; cell culture media and reagents ells, tissues, and organs; primary culture, secondary culture, continuous tures; application of animal cell culture for virus isolation and in vitro testin eity of environmental pollutants in cell culture, applications of cell culture technuman and animal viral vaccines and pharmaceutical proteins	; culture of cell lines, ng of drugs,
Outcome 5	Students will acquire animal cell culture proficiency for diverse applications, including virus isolation, drug testing, toxicity assessment, and pharmaceutical protein production, contributing to biomedical research and production sectors.	К5
	ring/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Ana aluate, K6 -Synthesis / Create	ılyze, K5-
	 Suggested Readings: Chawla, H. S. (2000). Introduction to Plant Biotechnology. Enf Science. Razdan, M. K. (2003). Introduction to Plant Tissue Culture. En Science. Slater, A., Scott, N. W., & Fowler, M. R. (2008). Plant Biotechn Introduction to Genetic Engineering. Oxford: Oxford University Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biocher Molecular Biology of Plants. Chichester, West Sussex: John W Sons. 	field, NH: nology: an y Press. nistry &

• Umesha, S. (2013). Plant Biotechnology. The Energy And Resources.
• Glick, B. R., & Pasternak, J. J. (2010). Molecular Biotechnology:
Principles and Applications of Recombinant DNA. Washington, D.C.:
ASM Press.
• Brown, T. A. (2006). Gene Cloning and DNA Analysis: an Introduction.
Oxford: Blackwell Pub.
• Primrose, S. B., & Twyman, R. M. (2006). Principles of Gene
Manipulation and Genomics. Malden, MA: Blackwell Pub.
• Slater, A., Scott, N. W., & Fowler, M. R. (2003). Plant Biotechnology:
The Genetic Manipulation of Plants. Oxford: Oxford University Press.
• Gordon, I. (2005). Reproductive Techniques in Farm Animals. Oxford:
CAB International.
• Levine, M. M. (2004). New Generation Vaccines. New York: M. Dekker.
• Pörtner, R. (2007). Animal Cell Biotechnology: Methods and Protocols.
Totowa, NJ: Humana Press.
Online Resources:
World Wide Web Service and Open AI
*

Course Outcome VS Programme Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L (1)	M (2)	M (2)	L(1)	L (1)	S (3)	M (2)	M (2)	M (2)	L (1)
CO2	L (1)	M (2)	M (2)	M (2)	L (1)	M (2)	L (1)	M (2)	L (1)	L (1)
CO3	M (2)	S (3)	L (1)	M (2)	M (2)	M (2)	M (2)	S (3)	M (2)	S (2)
CO4	M (2)	L(1)	M (2)	M (2)	L (1)	M (2)	S (3)	M (2)	M (2)	L (1)
CO5	L (1)	S (3)	M (2)	L (1)	M (2)	M (2)	M (2)	S (3)	M (2)	L (1)
W. AV	2.2	1.6	1.4	1.4	1.6	1.8	1.6	2.2	2.4	1.6

S – Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L (1)	L (1)	M (2)	L (1)	M (2)
CO2	M (2)	M (2)	S (3)	M (2)	M (2)
CO3	L (1)	L (1)	M (2)	S (3)	M (2)
CO4	L (1)	M (2)	L (1)	M (2)	M (2)
CO5	M (2)				
W. AV	1.8	1.4	1.8	2.0	2.0

*S –Strong (3), M-Medium (2), L- Low (1)

Course Objectives

The objectives of this course are to introduce field of microbiology with special emphasis on microbial diversity, morphology, physiology and nutrition; methods for control of microbes and host microbe interactions.

Student Learning Outcomes

Students should be able to:

- Identify major categories of microorganisms and analyze their classification, diversity, and ubiquity;
- Identify and demonstrate structural, physiological, genetic similarities and differences of major categories of microorganisms;
- Identify and demonstrate how to control microbial growth;
- Demonstrate and evaluate interactions between microbes, hosts and environment.

		SEMESTER-1								
Core	Course code: 501104	MICROBIOLOGY	Т	Credits: 2	Hours: 28					
Pre- requisite		Introduce field of microbiology with special emphasis on microbial diversity Syllabus Revised								
	Unit 1									
Objective 1	Students will be able classifications	to learn the basics of m	iicrobiology	and its taxor	nomical					
Kingdom con	cepts in classification	microbes, history & so of microorganisms, Cl ryotic microorganisms.								
Outcome 1	, v	n about the basics of mic es will be gained by the	0,	nd the	K1					
		Unit 2								
Objective 2	To understand the o	letailed concept of steril antimicrob		g with the im	portance of					
		isepsis: physical and l and antifungal drugs, b								
Outcome 2		nd the importance of stel e knowledge of using an		to control	K3					
		Unit 3								
Objective 3	To briefly learn abo	ut the structure and gene	etics of micro	organisms						
Bacterial morphology, structure, growth and nutrition of bacteria, bacterial growth curve, bacterial culture methods. Virus and bacteriophages, general properties of viruses, viral structure, taxonomy of virus, viral replication, cultivation and identification of viruses; sub-viral particles – viroids and prions										
Outcome 3	Understands the gen terms of research.	etics of microorganism	which in turr	n helps in	К2					

	Unit 4	
Objective 4	Ability to know about the emerging microbial diseases and its mode of	of action.
Microbial Disc microbes; Sour Growth rate; pathogenicity.	eases and Host Pathogen Interaction: Normal microbiota; Ecologica rce/Reservoir of infection; Pathogen transmission & interaction, Infe Nosocomial infection, Emerging microbial diseases mechanism o	l impact of ctious dose,
Outcome 4	Ability to know the importance of the microbial threats and will be able to develop some treatment strategies	K1
	Unit 5	
Objective 5	To understand about the nature of microbes and its significances in medical and industrial aspects.	n terms of
production of a of Microorgani	 extreme environment. Industrial microbiology: Use of microbes in feantibiotics, enzymes, organic acids, wine, beer, cheese, yogurt and vit ism on the earth - Symbiosis, mutalism, commensalism and parasitism Biological Control Agents (BCA).Quorum sensing and its inhibition m Students will be able to gain the knowledge of useful microbes and can able to apply in the field of industrial research. 	amins. Role 1, Probiotics
	ing/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analy/Evaluate, K6 -Synthesis / Create	sis/Analyze,
	 Suggested Readings: Pelczar, M. J., Reid, R. D., & Chan, E. C. (2001). <i>Microbiolo</i>, New York: McGraw-Hill. Willey, J. M., Sherwood, L., Woolverton, C. J., Prescott, L. M. Willey, J. M. (2011). <i>Prescott's Microbiology</i>. New York: McGraw-Hill. Matthai, W., Berg, C. Y., & Black, J. G. (2005). <i>Microbiolog</i>, <i>Principles and Explorations</i>. Boston, MA: John Wiley & Son Online Resources: World Wide Web Service and Open AI 	1., & y,

-	1	1	Cours	e Outcoi	ne vsri	ugi annn	ie Outco	me.	1	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M (2)	L (1)	S (3)	L (1)	S (3)	L (1)	S (3)	S (3)	S (3)	S (3)
CO2	M (2)	L (1)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO3	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO4	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO5	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
W.AV:	2.6	2.2	3	2.6	3	2.6	3	3	3	3
			*3	_ Strong '	2 – Mediı	1 m 1 _ L	W		•	

Course Outcome Vs Programme Outcome:

^{*3 –} Strong 2 – Medium 1 – Low

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO2	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO3	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO4	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO5	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
W.AV:	3	3	3	3	3	3
		*3 _ Strong				

Course Outcome Vs Programme Specific Outcome:

*3 – Strong 2 – Medium 1 – Low

Genetics

Course Objectives

The objectives of this course are to take students through basics of genetics and classical genetics covering prokaryotic/ phage genetics to yeast and higher eukaryotic domains. On covering all classical concepts of Mendelian genetics across these lifeforms, students will be exposed to concepts of population genetics, quantitative genetics encompassing complex traits, clinical genetics and genetics of evolution.

Student Learning Outcomes

On successful completion of this course, student will be able:

- Describe fundamental molecular principles of genetics;
- Understand relationship between phenotype and genotype inhuman genetic traits;
- Describe the basics of genetic mapping;
- Understand how gene expression is regulated.

		SEMESTER I							
Core	Course code: 501105	Course code: 501105 GENETICS T Credits: 2 Ho							
Pre- requisite	Concepts of	Syllabus Revised		2022-23					
		Unit I							
Objective 1	To understand the basic of	concepts of genetics and	l genome m	appings					
classical gene crosses using	Concept of a gene in pre-DNA era; mapping of genes in bacterial and phage chromosomes by classical genetic crosses; fine structure analysis of a gene; genetic complementation and other genetic crosses using phenotypic markers; phenotype to genotype connectivity prior to DNA-based understanding of gene.								
Outcome 1	Gain knowledge on DNA	structure and genome	mapping		K1 & K2				
	•	Unit II							
Objective 2	To get familiarized with forms and yeast genetics		Mendalian	genetics acros	s these life-				
-	bination, yeast mating type creens, complementation		-						
Outcome 2	Understanding concepts		Ę	etics	K2				
		Unit II							
Objective 3	To acquire knowledge in classical genetics	importance phenotype	and genetyp	e in Drosophi	la, a				
screening of a	& dihybrid crosses, back-c mutations based on phenot sis in context of developme	ypes and mapping the	•		-				
Outcome 3	Understanding relationship between phenotype and genotye in genetic K2 & K5 traits								
Unit IV									
Objective 4	To acquire knowledge in	11 0							
mutation sele disequilibrium	o the elements of population ction, balancing selection n; in-breeding depression stics; adaptive landscape, s	, Fishers theorem, Ha & mating systems;	urdy- Weint population	erg equilibri	um, linkage				

Outcome 4	Learn the concepts of population geneticsK3 &					
	Unit V					
Objective 5	To understand the concepts of QTLs					
Complex traits	, mapping QTLs, yeast genomics to understand biology of QTLs.					
Outcome 5	Learn to understand the QTLs application	K4				
	Unit VI					
Objective 6	To understand the theoretical concepts of plant genetics					
Laws of segreg gene pyramidi	ation in plant crosses, inbreeding, selfing, heterosis, maintenance of genetic	purity,				
Outcome 6	Learn the concepts of classical genetics and plant breeding	K3 & K5				
Evaluation/Eva	 Aluate, K6-Synthesis / Create Suggested Readings: Hartl, D. L., & Jones, E. W. (1998). Genetics: Principles and Sudbury, MA: Jones and Bartlett. Pierce, B. A. (2005). Genetics: a Conceptual Approach. New W.H. Freeman. Tamarin, R. H., & Leavitt, R. W. (1991). Principles of Gene Dubuque, IA: Wm. C. Brown. Smith, J. M. (1998). Evolutionary Genetics. Oxford: Oxford Press. 	v York: etics.				
	Online Resources:World Wide Web Service and Open AI					

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO2	M (2)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO3	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
CO4	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
CO5	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
CO6	M (2)	S (3)	M (2)	S (3)	M (2)	S (3)				
W.AV:	2.7	2.5	2	3	2	3	3	3	3	3

Course Outcome Vs Programme Outcome:

*3 – Strong 2 – Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO2	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO3	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO4	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO5	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO6	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
W.AV:	3	3	3	3	3	3
	47	C4	2 M. J.	1 T		

*3 – Strong 2 – Medium 1 – Low

Basics of Mathematics and Statistics

Credits

2

Course Objectives

The objective of this course is to give conceptual exposure of essential contents of mathematics and statistics to students.

Student Learning Outcomes On

completion of this course, students should be able to:

- Gain broad understanding in mathematics and statistics;
- Recognize importance and value of mathematical and statistical thinking, training, and approach to problem solving, on a diverse variety of disciplines.

		BASICS OF			
Core	Course code: 501106	MATHEMATICS	Т	Credits: 2	Hours: 19
		AND STATISTICS			
Pre-	Conceptual exposure of es		Syllabus R	evised	2022-23
requisite	mathematics and statistics		Synabus K	c viscu	2022-23
		Unit I			
Objective 1	To understand the conce	pts of algebra and its ap	plications		
quadratic mod of polynomia	in biological systems; qua lels etc.), introduction to po al functions, basics of tr inusoidal functions. Introdu	olynomials, graphs of b igonometric functions,	inomials and	d polynomials	s; Symmetr
Outcome 1	Gain broad understandin	g of concepts and its ap	plication in	biology	K1, K2
		Unit II			
Objective 2	To describe the basics of	differential and integra	l calculus ar	nd its advantag	ges
Differential ca	alculus (limits, derivatives),	, integral calculus (integ	grals).		
Outcome 2	Gain the knowledge of D	oifferential and integral	calculus		K1, K2
		Unit II			
Objective 3	To acquire knowledge or biology	n the application of mat	hematical co	ncepts by app	olying
Population dy	namics; oscillations, circad	lian rhythms, developm	ental pattern	is, symmetry i	in biologica
systems, fract and metabolic	al geometries, size-limits networks.	& scaling in biology, 1	nodeling ch	emical reaction	on network
Outcome 3	Learn to understand the a	application of mathemat	tics in biolog	gу	K2, K4
		Unit IV			
Objective 4	To acquire knowledge of	fusing statistical concept	ots in scienti	fic research	
propagation; I	counting, conditional proba Populations and samples, ex rrelation, analysis of varian	spectation, parametric to			
Outcome 4	Learn the concepts of po	pulation genetics			K3, K4
	ring/ Knowledge, K2 -Underaluate, K6 -Synthesis / Crea		nt/Apply K 4	-Analysis/An	alyze, K5 -

 Suggested Readings: Stroud, K. A., & Booth, D. J. (2009). Foundation Mathematics. New York, NY: Palgrave Macmillan Aitken, M., Broadhursts, B., & Haldky, S. (2009) Mathematics for Biological Scientists. Garland Science. Billingsley, P. (1986). Probability and Measure. New York: Wiley. Rosner, B. (2000). Fundamentals of Biostatistics. Boston, MA: Duxbury Press Daniel, W. W. (1987). Biostatistics, a Foundation for Analysis in the Health Sciences. New York: Wiley.
 Online Resources: World Wide Web Service and Open AI

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO2	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO3	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
CO4	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
W.AV:	3	2.5	2	3	2	3	3	3	3	3

Course Outcome Vs Programme Outcome:

*3 – Strong 2 – Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
3	3	3	3	3	3
	S (3) S (3) S (3) S (3) S (3)	S (3) S (3) S (3) S (3)	S (3) S (3) S (3) S (3) S (3) S (3)	S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3)	S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3)

*3 – Strong 2 – Medium 1 – Low

Course Objectives

Basics of Chemistry and Physics

Credits

2

The objectives of this course are to cover all essentials required to appreciate physico-chemical principles underlying biological processes. Student Learning Outcomes Students should be able to have a firm foundation in fundamentals and application of current chemical and physical scientific theories.

		SEMESTER I						
Core	Course code: 501107	BASICS OF CHEMISTRY AND PHYSICS	Т	Credits: 2	Hours: 24			
Pre- requisite		Concepts of physio-chemical principles underlying biological processes			2022-23			
Unit I								
	To gain a basis knowled	ge into physical science	s and its imp	ortance in bio	logical			

Objective 1 research

Physical quantities and their dynamics: definitions, units and dimensions; vectors & scalars, displacement, velocity, acceleration, kinematic formulas, angular momentum, torque force, power, work, energy (kinetic & potential/electric charge separation, electromagnetic spectrum, photons etc.); springs & Hookes laws; elastic and inelastic collisions; Newton's law of motions and conservation principles; simple harmonic motions, mechanical waves, Doppler effect, wave interference, amplitude, period, frequency & wavelength; diffusion, Fick's law, dissipation, random walks, and directed motions in biological systems; low Reynolds number - world of Biology, buoyant forces, Bernoulli's equation, viscosity, turbulence, surface tension, adhesion; laws of thermodynamics: Thermodynamics in Biological Systems, conduction, convection and radiation, internal energy, entropy, temperature and free energy, Maxwell's demon (entropic forces at work in biology, chemical assemblies, self-assembled systems, role of ATP); Coulomb's law, conductors and insulators, electric potential energy of charges, nerve impulses, Ohms law (basic electrical quantities: current, voltage & power), electrolyte conductivity, capacitors and capacitance, dielectrics; various machines in biology i.e. enzymes, allostery and molecular motors (molecules to cells and organisms).

Outcome 1	Learn the concepts of energy, Newton law, Thermodynamics, enzyme dynamics and biological sciences	K2, K4								
	Unit II									
Objective 2	To acquire knowledge into basic concepts of chemistry used for biological	sciences								
Basic constitue	ents of matter - elements, atoms, isotopes, atomic weights, atomic number	s, basics of								
mass spectron	netry, molecules, Avogadro number, molarity, gas constant, molecula	ar weights,								
structural and	molecular formulae, ions and polyatomic. ions; chemical reaction	s, reaction								
stoichiometry,	rates of reaction, rate constants, order of reactions, Arrhenious equation	n, Maxwell								
Boltzmann dis	tributions, rate- determining steps, catalysis, free-energy, entropy and enthal	lpy changes								
during reaction	ns; kinetic versus thermodynamic controls of a reaction, reaction	equilibrium								
(equilibrium	constant); light and matter interactions (optical spectroscopy, flu	uorescence,								
bioluminescen	ce, paramagnetism and diamagnetism, photoelectron spectroscopy; chem	nical bonds								
(ionic, covaler	nt, Van der Walls forces); electronegativity, polarity; VSEPR theory and	l molecular								

geometry, dipole moment, orbital hybridizations; states of matter - vapor pressure, phase diagrams, surface tension, boiling and melting points, solubility, capillary action, suspensions, colloids and solutions; acids, bases and pH - Arrhenious theory, pH, ionic product of water, weak acids and bases, conjugate acid-base pairs, buffers and buffering action etc; chemical thermodynamics - internal energy, heat and temperature, enthalpy (bond enthalpy and reaction enthalpy), entropy, Gibbs free energy of ATP driven reactions, spontaneity versus driven reactions in biology; redox reactions and electrochemistry - oxidation-reduction reactions, standard cell potentials, Nernst equation, resting membrane potentials, electron transport chains (ETC) in biology, coupling of oxidative phosphorylations to ETC; theories of ATP production and dissipation across biological membranes; bond rotations and molecular conformations - Newman projections, conformational analysis of alkanes, alkenes and alkynes; functional groups, optically asymmetric carbon centers, amino acids, proteins, rotational freedoms in polypeptide backbone (Ramachandran plot).

Outcome 2	Learn concepts of chemicals constituents applicable for biological	K2, K4,								
	sciences	K5								
K1-Remember	K1-Remembering/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5-									
Evaluation/Eva	Evaluation/Evaluate, K6-Synthesis / Create									
	Suggested Readings:									
EE	 Baaquie, B. E. (2000). Laws of Physics: a Primer. Singapore University of Singapore. 	: National								
	 Matthews, C. P., & Shearer, J. S. (1897). Problems and Ques Physics. New York: Macmillan Company. 	stions in								
	 Halliday, D., Resnick, R., & Walker, J. (1993). Fundamental Physics. New York: Wiley. 									
	 Ebbing, D. D., & Wrighton, M. S. (1990). General Chemistr Houghton Mifflin. 	y. Boston:								
	 Averill, B., & Eldredge, P. (2007). Chemistry: Principles, Pa Applications. San Francisco: Benjamin Cummings. 	tterns, and								
	 Mahan, B. H. (1965). University Chemistry. Reading, MA: A Wesley Pub. 	Addison-								
	• 7. Cantor, C. R., & Schimmel, P. R. (2004). Biophysica	1								
	Chemistry. San Francisco: W.H. Freeman.									
	Online Resources:									
	World Wide Web Service and Open AI									

Course Outcome	Vs	Programme	Outcome:
----------------	----	-----------	----------

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	S (2)	M (2)	S (3)	M (2)	S (3)				
CO2	S (2)	S (3)	M (2)	S (3)	M (2)	S (3)				
W.AV:	2.5	2.5	2	3	2	3	3	3	3	3
II		1						1	1	1

*3 – Strong 2 – Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	S (3)						
CO2	S (3)						
W.AV:	3	3	3	3	3	3	
*3 – Strong 2 – Medium 1 – Low							

Laboratory I: Biochemistry & Analytical Techniques

Credits

4

Course Objectives

Introducing students to experiments in biochemistry and to teach students the experimental methods in biochemistry in a problem oriented manner.

Student Learning Outcomes

On completion of this course, students should be able to:

- To elaborate concepts of biochemistry with easy to run experiments;
- To familiarize with basic laboratory instruments and understand the principle of measurements using those instruments with experiments.

		SEMESTER I						
Core	Course code: 501108	LAB I: BIOCHEMISTRY AND ANALYTICAL TECHNIQUES	P Credits: 4		Hours:			
Pre- requisite	Hands on experie biochemical para	ence in analyzing the meters	Syllabus R	evised	2022-23			
		Unit I						
Objective 1	To introduce the	e students to experiments in bioc	hemistry					
Ma - Pre - Pre	 Introduction to measurements – Weighing Balance and Pipetting, Morality, Normality, Morality. Preparing various stock solutions and working solutions that will be needed for the course Preparation of buffers of pH range 2 to 11 (Tris buffer, PBS buffer, citrate buffer, sodium phosphate buffer, potassium phosphate buffer, phosphate citrate buffer). 							
Outcome 1	Elaborate the co	oncepts of biochemistry with easy	y to run expe	eriments	K6			
		Unit II						
Objective 2	To teach studen manner	ts the experimental methods in b	iochemistry	in a problem o	oriented			
- - -	Estimation of Pk	c-Na Acetate buffer and validate a values in Acid-Base titration. values of Aminoacids	the Henders	son Hasselbacl	h equation.			
Outcome 2		n basic laboratory instruments an asurements using those instruments			K2			
		Unit III						
Objective 3	To develop skil	ls with the students to perform th	e basic anal	ytical methods	\$			
 Basic concepts and applications of the instruments used in biochemical analysis (Colorimetry, spectrophotometry and spectroflorimetry) To determine an unknown protein concentration by plotting a standard graph of BSA using UV-Vis Spectrophotometer and validating the Beer- Lambert's Law. 								
Outcome 3	Distinguish betw techniques	ween chromatography, spectrosco	opy and cold	primetry	K4			

	Unit IV							
Objective 4	Objective 4 To familiarize the students with various clinically applicable analytical techniques							
- Separat	ion and identification of aminoacids by TLC method							
- Separat	ion of plant pigments by TLC method.							
- Separat	ion of amino acids by paper chromatography							
- Electro	phoresis techniques: separation of proteins by Native and SDS PAGE.							
- Identifi	cation of proteins by 2D gels-Demonstration							
Outcome 4	Exhibit a knowledge base in the fundamentals of electrophoresis and its	K6						
	practical application							
	Unit V							
Objective 5	To expose the students to the principles of separation techniques							
- Derivat	ion of Michaelis- Menten equation and determination of Vmax, Km. Determ	nination of						
optimu	m pH, optimum temperature and substrate concentration of enzymes							
- Demon	stration of HPLC, GC-MS, Fluorescence spectrophotometer.							
Outcome 5	Obtain hands-on experience in basic separation techniques,	N5 N6						
Outcome 5 instrumentation, and concept of buffer preparation. K5, K6								
K1-Remember	K1-Remembering/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5-							
Evaluation/Eva	aluate, K6 -Synthesis / Create							

Course Outcome Vs Programme Outcome:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	M (2)	S (3)	S (3)	M (2)	S (3)	S (3)				
CO 2	M (2)	S (3)	S (3)	M (2)	S (3)	S (3)				
CO 3	M (2)	S (3)	S (3)	M (2)	S (3)	S (3)				
CO 4	M (2)	M (2)	M (2)	M (2)	S (3)	S (3)	S (3)	M (2)	S (3)	S (3)
CO 5	M (2)	M (2)	M (2)	M (2)	S (3)	S (3)	S (3)	M (2)	S (3)	S (3)
W.AV:	2	2	2	2	2.4	3	3	2	3	3

*3 – Strong 2 – Medium 1 – Low

Course Outcome	Vs Programme	Specific Outcome:

CO	POS1	POS2	POS3	POS4	POS5	POS6
CO 1	S (3)					
CO 2	S (3)					
CO 3	S (3)					
CO 4	S (3)					
CO 5	S (3)					
W.AV:	3	3	3	3	3	3

Laboratory II: Microbiology

Course Objectives

The objective of this laboratory course is to provide practical skills on basic microbiological techniques.

Student Learning Outcomes

Students should be able to:

- Isolate, characterize and identify common bacterial organisms;
- Determine bacterial load of different samples;
- Perform antimicrobial sensitivity tests;
- Preserve bacterial cultures.

		: Lab in	Т			
Core	Course code: 501109	01109 Microbiology		Credits: 2	Hours:	
Pre- requisite	To provide practical skills on basic microbiological techniques. Syllabus Revised 2022-					
		Unit 1				
Objective 1	To develop the basic microorganisms	knowledge about the st	erilization, c	ultivation an	d storage of	
2. Prepara	ation of media for culti	l safety in microbiologic ivation of bacteria s: slants, stabs and glyce				
Outcome 1	Ability to know abou cultivation and stora	it the importance of ster ige of microbes	ilization, the	methods to	K3	
		Unit 2				
Objective 2	To make the student strains	s understand the method	ls to isolate a	and analyse t	he bacterial	
 Enume Study of Bacillus, E Prepara Isolation Molecum 	ration of bacteria: stan of colony and growth c coli, Staphylococcus ation of bacterial smea on and identification alar characterizations.	characteristics of some c , Streptococcus, etc. r and Gram's staining. of bacteria from soil	ommon bact /water samp	les – Biocl		
Outcome 2	- U	e about the isolation and erms of its physical and		•	K5	
		Unit 3				
Objective 3	To develop the kno current scenario.	wledge about the drug	resistance ar	nd its import	ance for the	
 Determini Bacterini 	nination of phenol co-e ial cell – cell communi	and demonstration of de fficient of antimicrobial cation system. nhibitory Concentration	agents.	е.		
Outcome 3	Knowledge about the methods involved in the detection and K4 analysing of drug resistance with its mode of action					
	ring/ Knowledge, K2 - n/Evaluate, K6 -Synthes	Understanding, K3 -Ap sis / Create	plicant/Appl	y K4- Analy	sis/Analyze,	

Suggested Readings:

- Cappuccino, J. G., & Welsh, C. (2016). *Microbiology: a Laboratory Manual*. Benjamin-Cummings Publishing Company.
- Collins, C. H., Lyne, P. M., Grange, J. M., &Falkinham III, J. (2004). *Collins and Lyne's Microbiological Methods* (8th ed.). Arnolds.
- Tille, P. M., & Forbes, B. A. *Bailey & Scott's Diagnostic Microbiology*. **Online Resources:**
 - World Wide Web Service and Open AI

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	S (3)	S (3)	S (3)	M (2)	S (3)				
CO2	S (3)	S (3)	S (3)	S (3)	M (2)	S (3)				
CO3	S (3)									
W.AV:	3	3	3	3	2.4	3	3	3	3	3

Course Outcome Vs Programme Outcome:

*3 – Strong 2 – Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)					
CO2	S (3)					
CO3	S (3)					
W.AV:	3	3	3	3	3	3

*3 – Strong 2 – Medium 1 – Low

Laboratory III: Plant and Animal Biotechnology

Course Objectives

The objectives of this course are to provide hands-on training in basic experiments of plant and animal biotechnology.

Student Learning Outcomes

On completion of course, students should be able to gain basic skills in plant and animal biotechnology.

		SEMESTER I					
Core	LABORATORY III:LABORATORY III:PLANT ANDPANIMALPBIOTECHNOLOGYCredits: 2						
Pre- requisite			Syllabus R	Revised	2022-23		
		Unit I					
Objective 1		reparing diverse cell cultures and to obtain practical			-		
 Preparation of stock solution (MS and B5 media). Preparation of culture media with various supplements for plant tissue culture experiments. Sterilization and inoculation of various explants for callus induction and direct regeneration. Micropropagation of important medicinal plants Synthetic seed development and plant regrowth in a representative plant Demonstration of cryopreservation in endangered plant germplasm. 							
Outcome 1	species of interest and le	establish and optimize m earn to employ tissue cult f food crops and medicin	ure techniqu	••	К3		
		Unit II					
Objective 2		ience in genetic engineeri					
 Agrobacterium tumefaciens mediated transformation of important food crops. RAPD & ISSR profile of wild type and <i>in vitro</i> conserved plants and observation of genetic fingerprinting profiles. Plant genomic DNA isolation by CTAB method and its quantitation by visual as well as spectrophotometric methods. Hairy root induction in medicinal plants with commercial importance 							
Outcome 2		DNA extraction and isolat apply knowledge of mo arious genomes.	*	Ũ	K4		

	Unit III	
Objective 3	To learn basic handling techniques in animal cell culture laboratory	
in cell o storage hemocy 2. Differe 3. Prepara disaggr 4. Establis 5. Detecti	l cell culture laboratory: Sterilization techniques and Safety protocols. Equip culture laboratory: Autoclave, Laminar flow hood/biosafety cabinet, CO2 ind (Refrigerator, freezer and cryostorage container), Inverted microscope, ytometer, centrifuge, water bath. Int types of Cell culture media and preparation. ation of Primary cell cultures from different sources using mechanical and en regation. shed cell lines- Culture condition, maintenance and passaging. on and prevention of contamination in cell culture. vation and revival of cells.	cubator,
Outcome 3	Students will learn to establish, handle, maintain and store different cell lines.	K3
	Unit IV	
Objective 4	To have hands on training in basic cytotoxicity assays	
 Checking Measure 	unting by hemocytometer. ng cell viability by MTT and Trypan blue assay. rement of apoptosis by Acridine orange/Ethidium bromide staining.	
Outcome 4	Students will be able to screen drugs or any toxic compounds in in vitro conditions on different cell types.	K4, K5
	Unit V	
Objective 5	To gain experience in handling and conducting experiments in live animal systems	model
 Animal Prepara cell cul Isolatio Isolatio 	animal models and route of administration – <i>C. elegans</i> and mice I handling and dissection – Mice, C. elegans –Demonstration. ation of single cell suspension from mice spleen/ mice thymus/chicken liver (ture) on of DNA from animal tissue. on of RNA from model system osome staining from animal cells using giemsa stain.	Primary
Outcome 5	Gaining knowledge in route of drug administration, collecting tissue/cell samples and isolation of their genetic materials will help the students to plan and execute experiments on their own.	К3
	ring/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Ana aluate, K6 -Synthesis / Create	lyze, K5-
	 Suggested Readings: Chawla, H. S. (2000). Introduction to Plant Biotechnology. E NH: Science. Razdan, M. K. (2003). Introduction to Plant Tissue Culture. I NH: Science. Gordon, I. (2005). Reproductive Techniques in Farm Animal CAB International. Pörtner, R. (2007). Animal Cell Biotechnology: Methods and 	Enfield, s. Oxford:

 Totowa, NJ: Humana Press Slater, A., Scott, N. W., & Fowler, M. R. (2008). Plant Biotechnology: an Introduction to Genetic Engineering. Oxford: Oxford University Press. Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry & Molecular Biology of Plants. Chichester, West Sussex: John Wiley &
Molecular Biology of Plants. Chichester, West Sussex: John Wiley & Sons.
Online Resources:
World Wide Web Service and Open AI

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L(1)	L(1)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)
CO2	L(1)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)
CO3	L(1)	L(1)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)
CO4	L(1)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)
CO5	L(1)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)
W.AV	1	2.2	3	3	3	3	3	2	2.6	3

Course Outcome VS Programme Outcomes

S-Strong(3),M-Medium(2),L-Low(1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	M(2)	L(1)	L(1)	S(3)	S(3)	M(2)
CO2	M(2)	L(1)	S(3)	S(3)	S(3)	M(2)
CO3	M(2)	L(1)	L(1)	S(3)	S(3)	M(2)
CO4	M(2)	L(1)	L(1)	S(3)	S(3)	M(2)
CO5	M(2)	L(1)	S(3)	S(3)	S(3)	M(2)
W.AV	2	1	1.8	3	3	2

S-Strong(3),M-Medium(2),L-Low(1)

Semester Two

Genetic Engineering

Course Objectives

The objectives of this course are to teach students with various approaches to conducting genetic engineering and their applications in biological research as well as in biotechnology industries. Genetic engineering is a technology that has been developed based on our fundamental understanding the of principles of molecular biology and this is reflected in the contents of this course.

Student Learning Outcomes

Given the impact of genetic engineering in modern society, the students should be endowed with strong theoretical knowledge of this technology. In conjunction with the practical in molecular biology & genetic engineering, the students should be able to take up biological research as well as placement in the relevant biotech industry.

SEMESTER II									
Core	Course code: 501201	GENETIC ENGINEERING	Т	Credits: 3	Hours:40				
Pre- requisite	Concepts of Genetic Engi	Concepts of Genetic Engineering Syllabus Revised 2022-2							
		Unit I							
Objective 1 To obtain the basic concepts of genetic engineering									
Impact of genetic engineering in modern society; general requirements for performing a genetic engineering experiment; restriction endonucleases and methylases; DNA ligase, Klenow enzyme, T4 DNA polymerase, polynucleotide kinase, alkaline phosphatase; cohesive and blunt end ligation; linkers; adaptors; homopolymeric tailing; labellingof DNA: nick translation, random priming, radioactive and non-radioactive probes, hybridization techniques: northern, southern, south-western and far-western and colony hybridization.									
Outcome 1	Gain knowledge on gene	tic engineering			K1, K2				
		Unit II							
Objective 2	To understand the variou	s expression system in	genetic engi	neering					
vectors; Insertion and Replacement vectors; Cosmids; Artificial chromosome vectors (YACs; BACs); Principles for maximizing gene expression expression vectors; pMal; GST; pET-based vectors; Protein purification; His-tag; GST-tag; MBP-tag etc.; Intein-based vectors; Inclusion bodies; methodologies to reduce formation of inclusion bodies; mammalian expression and replicating vectors; Baculovirus and Pichia vectors system, yeast vectors, shuttle vectors.									
Outcome 2	Understanding concepts	and application of expre	ession syster	n	K1, K2				
		Unit III							
 multiplex, n PCR, asymme specific mutage 	To gain knowledge on ty PCR: primer design; fidelit ested; reverse-transcription etric PCR, cloning of PCR genesis; PCR in molecular RNA sequencing; chemica	y of thermostable enzyr PCR, real time PCR, to products; T-vectors; pr r diagnostics; viral and	nes; DNA p ouchdown P oof reading bacterial d	olymerases; ty CR, hot start I enzymes; PC etection; autor	pes of PCF PCR, colony R based site nated DNA				
Outcome 3	Understanding the cond		of molecula	r techniques	K2, K3				
	used in diagnostic and m								
		Unit IV							
Objective 4	To acquire knowledge in DNA sequencing	n gene manipulation tec	chnique, pro	tein-DNA inte	eraction and				
libraries; reve microarrays –	reign DNA into host cells; rse transcriptase and cDN genomic arrays, cDNA a c mobility shift assay; I bitation;	IA synthesis; cDNA ar arrays and oligo arrays	nd genomic ; study of j	libraries; con protein-DNA	struction on the struction of the structure of the struct				
Outcome 4	Learn the concepts and a				K2, K3				

Unit V							
Objective 5 To educate the application of genetic engineering							
	g techniques; introduction to siRNA; siRNA technology; Micro RNA; construction of						
	s; principle and application of gene silencing; gene knockouts and gene therapy;						
creation of tran	nsgenic plants; debate over GM crops; introduction to methods of genetic manipulation						
	odel systems e.g. fruit flies (Drosophila), worms (C. elegans), frogs (Xenopus), fish						
, ,	nd chick; Transgenics- gene replacement; gene targeting; creation of transgenic and						
knock-out mic	e; disease model; introduction to genome editing by CRISPR-CAS.						
Outcome 5	Learn to understand the application of genetic engineering K3, K4						
K1-Remember	ing/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5-						
Evaluation/Eva	aluate, K6 -Synthesis / Create						
	 Suggested Readings: Old, R. W., Primrose, S. B., & Twyman, R. M. (2001). Principles of Gene Manipulation: an Introduction to Genetic Engineering. Oxford: Blackwell Scientific Publications. Green, M. R., & Sambrook, J. (2012). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Brown, T. A. (2006). Genomes (3rd ed.). New York: Garland Science Pub. Selected papers from scientific journals, particularly Nature & Science. Technical Literature from Stratagene, Promega, Novagen, New England Biolab etc. Online Resources: World Wide Web Service and Open AI 						

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO2	M (2)	S (3)	S (3)	S (3)	M (2)	S (3)				
CO3	M (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO4	S (3)	M (2)	S (3)	S (3)	M (2)	S (3)				
CO5	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
W.AV:	2.8	2.6	2.4	3	2	3	3	3	3	3

Course Outcome Vs Programme Outcome:

*3 – Strong 2 – Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)					
CO2	S (3)					
CO3	S (3)					
CO4	S (3)					
CO5	S (3)					
W.AV:	3	3	3	3	3	3

Immunology

Course Objectives

The objectives of this course are to learn aboutstructural featuresofcomponentsof immune system as well as their function. The major emphasis of this course will be on development of immune system and mechanisms by which our body elicits immune response. This will be imperative for students as it will help them to predict about nature of immune response that developsagainstbacterial, viralorparasitic infection, and prove it by designing new experiments.

Student Learning Outcomes On

completion of this course, students should be able to:

- Evaluateusefulnessofimmunology indifferentpharmaceuticalcompanies;
- Identifyproperresearchlabworking in area of their own interests;
- Apply their knowledge and design immunological experiments to demonstrate innate, humoral or cytotoxic T lymphocyte responses and figureoutkindofimmuneresponses in thesettingofinfection(viralorbacterial).

		SEMESTER II								
Core	Course code: 501202	IMMUNOLOGY	Т	Credits: 3	Hours:40					
Pre-requisite			Syllabus R	levised	2022-23					
	Unit I									
Objective 1	Learn about the basics an	nd the structural features	s of compon	ents of immun	e system					
Elements of in	nmune system: Compone	ents of innate and acqu	ired immun	ity. Organs (p	orimary and					
• /	d cells of the immune	• • • •								
associated Lym	phoid tissue (MALT, CA	LT, GALT). Antigens -	immunoge	ns, haptens, ac	ljuvants and					
	cytosis: steps involved, pa	athogen recognition reco	eptors (PRR) and pathogen	n associated					
molecular patte	ern (PAMP)									
Outcome 1	Acquire knowledge in th	e basics of immune syst	em and its o	components	K1					
		Unit II								
Objective 2	Acquire knowledge in de	evelopment of immune s	system							
Immunoglobul	Immunoglobulins- basic structure, classes & subclasses. Immunoglobulin superfamily. Antibody									
genes and gene	ration of diversity. Matur	ation, activation and dif	ferentiation	of B and T ce	lls. B and T					
cell receptors.	; Humoral and cell-me	diated immune respons	ses. ADCC.	Mechanisms	of antigen					
processing and	presentation-cytosolic an	d endocytic pathways. A	antibody eng	gineering.						
Outcome 2	Students will understand	how the body's immun	e system wo	ork on						
	immune stimulation.				K2					
		Unit III								
Objective 3	Learn the role of function	nal components of imm	une system							
Major histocor	npatibility complex- strue	cture and its interaction	with pepti	de. Cytokines-	properties,					
receptors and t	herapeutic uses. The com	plement systems: mode	of activatio	on, classical, a	lternate and					
lectin pathway.	Immunization- active an	d passive. Immune resp	onse to infe	ctious disease	s – bacterial					
(tuberculosis),	viral (HIV), protozoan an	d helminths.								
Outcome 3	Apply knowledge and de									
	innate, humoral or cytoto	• • • •			K3					
	type of immune response	es to an infection (viral o	or bacterial)							

	Unit IV
Objective 4	Understand the mechanisms by which our body elicits immune response by external
	and internal factors.
graft rejection Autoimmunity sclerosis, Rheu	n immunity - Organ transplantation and HLA tissue typing, immunological basis of n, transplantation and immunosuppressive therapy. Hypersensitivity-Type I-IV - organ specific (Type 1 Diabetes Mellitus, Myasthenia Gravis) and systemic (Multiple amatoid Arthritis). Tumor immunology: tumor antigens; immune response to tumors sion of the immune system, cancer immunotherapy.
Outcome 4	Analyze the mechanism behind the disorders of immune system K4
	Unit V
Objective 5	Learn about the different immunization techniques and immune-based therapy for diseases.
recombinant D antibody, Mon	Active and passive immunization. Vaccines- live, killed, attenuated, subunit NA, protein based, peptide, plant-based and conjugate. Immunotherapy; Humanized oclonal antibodies- production and uses for cancer treatment. Applications of catalytic the treatment of diseases.
Outcome 5	Gain knowledge in the application sectors like vaccinology and may evoke their research interest leading to the development of new products for human welfare
	ing/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Analyze, K5 - Iluate, K6 -Synthesis / Create
	 Suggested Readings: Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. (2006). Kuby Immunology. New York: W.H. Freeman. Brostoff, J., Seaddin, J. K., Male, D., & Roitt, I. M. (2002). Clinical Immunology. London: Gower Medical Pub. Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's Immunobiology. New York: Garland Science. Paul, W. E. (2012). Fundamental Immunology. New York: Raven Press. Goding, J. W. (1996). Monoclonal Antibodies: Principles and Practice: Production and Application of Monoclonal Antibodies in Cell Biology, Biochemistry, and Immunology. London: Academic Press. Parham, P. (2005). The Immune System. New York: Garland Science. World Wide Web Service and Open AI

Course Outcome VS Programme Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	S(3)	L(1)	L(1)	M(2)	S(3)	M(2)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	L(1)	L(1)	M(2)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	L(1)	M(2)	S(3)	S(3)
W.AV	3	3	3	2.4	2.2	2	1.8	2.8	2.6	3

S –Strong (3), M-Medium (2), L- Low (1) Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S(3)	M(2)	L(1)	S(3)	L(1)	M(2)
CO2	S(3)	M(2)	L(1)	S(3)	L(1)	L(1)
CO3	S(3)	S(3)	L(1)	S(3)	L(1)	S(3)
CO4	S(3)	S(3)	L(1)	S(3)	L(1)	S(3)
CO5	S(3)	S(3)	L(1)	S(3)	L(1)	S(3)
W.AV	3	2.6	1	3	1	2.4

S –Strong (3), M-Medium (2), L- Low (1)

Bioinformatics

Course Objectives

The objectives of this course are to provide theory and practical experience of the use of common computational tools and databases which facilitate investigation of molecular biology and evolution-related concepts.

Student Learning Outcomes

Studentshouldbeableto :

- Develop an understanding of basic theoryofthesecomputationaltools;
- Gain working knowledge of these computational tools and methods;
- Appreciate their relevance for investigating specific contemporary biological questions;
- Criticallyanalyseandinterpretresults of their study.

		SEMESTER II							
Core	Course code: 501203	BIOINFORMATICS	Т	Credits: 3	Hours:26				
Pre-requisite	e e	tigation of molecular	Syllabus R	levised	2022-23				
		Unit I							
Objective 1	A	o provide introduction and understanding of the field of bioinformatics and formation regarding various biological databases.							
and basic com Biological XM background for	matics basics: Computers in biology and medicine; Introduction to Unix and Linux system c commands; Database concepts; Protein and nucleic acid databases; Structural databases al XML DTD's; pattern matching algorithm basics; databases and search tools: biologica and for sequence analysis; Identification of protein sequence from DNA sequence; searching ases similar sequence; NCBI; publicly available tools; resources at EBI; resources on web mining tools. Helps to better understand and comprehend the principles of								
Outcome 1	bioinformatics and provide practical knowledge on the biological K1, K2 latabases.								
		Unit II							
Objective 2	To make the students understand and perform analyses of DNA sequences.								
database searc prediction; loc identification;	DNA sequence analysis: gene bank sequence database; submitting DNA sequences to databases and database searching; sequence alignment; pairwise alignment techniques; motif discovery and gene prediction; local structural variants of DNA, their relevance in molecular level processes, and their identification; assembly of data from genome sequencing.								
Outcome 2		l DNA sequence analyse e on DNA sequencing tec	U	n theoretical	K1, K2				

	Unit III					
Objective 3	To understand the principle and purpose of Multiple sequence analysis and to equistudents with its practical knowledge.	ıip				
the FASTA3 alignment; sub	nce analysis; multiple sequence alignment; flexible sequence similarity searching with program package; use of CLUSTALW and CLUSTALX for multiple sequen pointing DNA protein sequence to databases: where and how to submit, SEQUERS; submitting aligned sets of sequences, updating submitted sequences, methods	ice N,				
Outcome 3	Enable students to perform multiple sequence analysis in order to K1, K2	&				
	understand the phylogenetic distance between the DNA sequences. K3					
	Unit IV					
Objective 4	To attain theoretical and practical knowledge on protein modelling and the softwar used for protein modelling.	es				
and neighbours RMS fit of co scoring; prote	ng: introduction; force field methods; energy, buried and exposed residues; side chai s; fixed regions; hydrogen bonds; mapping properties onto surfaces; fitting monomer onformers; assigning secondary structures; sequence alignment- methods, evaluation in completion: backbone construction and side chain addition; small pepties software accessibility; building peptides; protein displays; substructure manipulation	rs; on, de				
	Outcome 4Analyze and understand various protein structures and provide practicalK1, K2,insights related to protein structure modelling and its analysis.K3 & K4					
	Unit V					
Objective 5	To gain both theoratical and practical knowledge on protein structure prediction, the techniques related to the understanding of protein structures and to understand the process of scientific journals, grants and fundings.					
analyzing sec modelling: po align structure techniques; top prediction on structural prof methods of s analysis, scorin silico drug de	re prediction: protein folding and model generation; secondary structure prediction ondary structures; protein loop searching; loop generating methods; homolog tential applications, description, methodology, homologous sequence identification s, align model sequence; construction of variable and conserved regions; threadin pology fingerprint approach for prediction; evaluation of alternate models; structure a mystery sequence; structure aided sequence techniques of structure prediction illes, alignment algorithms, mutation tables, prediction, validation, sequence base tructure prediction, prediction using inverse folding, fold prediction; significan ng techniques, sequence-sequence scoring; protein function prediction; elements of sign;Virtual library: Searching PubMed, current content, science citation index an ess services, electronic journals, grants and funding information.	gy on; ng ure on; ed ice in				
Outcome 5	Learn about the practical techniques related to protein structureK1, K2,prediction and analysis along with an understanding of scientific citationK3, K4index ,journals and information related to grants and fundings.K5	&				
	ing/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Analyze, K5	-				
Evaluation/Eva	aluate, K6 -Synthesis / Create					
	 Suggested Readings: Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxfor University Press. 2.Mount, D. W. (2001). Bioinformatics: Sequence and Genore 					

Analysis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
Press.
• 3.Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: a
Practical Guide to the Analysis of Genes and Proteins. New York:
Wiley-Interscience.
• 4.Pevsner, J. (2015). Bioinformatics and Functional Genomics.
Hoboken, NJ.: Wiley-Blackwell.
• 5.Bourne, P. E., & Gu, J. (2009). Structural Bioinformatics. Hoboken,
NJ: Wiley-Liss.
• 6.Lesk, A. M. (2004). Introduction to Protein Science: Architecture,
Function, and Genomics. Oxford: Oxford University Press.
Online Resources:
World Wide Web Service and Open AI

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	S (3)	M (2)	M (2)	L (1)	S (3)				
CO2	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO3	S (3)	M (2)	M (2)	M (2)	M (2)	S (3)				
CO4	S (3)	M (2)	M (2)	S (3)	L (1)	S (3)				
CO5	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
W.AV:	3	2.4	2	2.6	1.6	3	3	3	3	3

Course Outcome Vs Programme Outcome:

*3 – Strong 2 – Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)					
CO2	S (3)					
CO3	S (3)					
CO4	S (3)					
CO5	S (3)					
W.AV:	3	3	3	3	3	3

*3 – Strong 2 – Medium 1 – Low

.

Genomics and Proteomics

Credits

Course Objectives

The objectives of this course is to provide introductory knowledge concerning genomics, proteomics and their applications. Student Learning Outcomes Students should be able to acquire knowledge and understanding of Fundamentals of genomics and proteomics, transcriptomics and metabolomics and their applications in various applied areas of biology.

		SEMESTER II								
Core	Course code: 501204	GENOMICS AND PROTEOMICS	Т	Credits: 2	Hours:28					
Pre- requisite	Basic Knowledge in Gen	omics and Proteomics	Syllabus F	Revised	2022-23					
		Unit I								
Objective 1	To build upon knowle organisms	dge of genome organi	zation of I	Prokaryotic and	eukaryotic					
	· ·	of prokaryotic and eukaryotic genome organization; extra-chromosomal DNA: ds, mitochondria and chloroplast								
Outcome 1	Gain fundame	ntal knowledge on geno	ome organiz	ation	K1					
		Unit II								
Objective 2	To understand of variou	s techniques available f	or genetic a	nd physical map	ping.					
	sical mapping, cytogenet in situ hybridization, comp Understand the molecular variations in an organisr	parative gene mapping. ar techniques for mappi	_		radiation					
		Unit III								
Objective 3		To aware of genome projects developed for most studied model organisms and the comparison with human genome.								
	ne Project, genome seque ome project information fi	01 0	obes, plants	and animals, ac	cessing and					
Outcome 3	Acquire knowledge Gen	ome projects for variou	arious organisms K2							
		Unit IV								
Objective 4	To acquire knowledge o	n comparative genome	using seque	encing methods						
SNPs; use of g	and classification of organisms using molecular markers- 16S rRNA typing/sequencing, genomes to understand evolution of eukaryotes, track emerging diseases and design new nining gene location in genome sequence.									
Outcome 4	Analyze and understand t of various organisms and group of species.	_	-	-	K5					

Objective 5 To gain knowledge on protein techniques Aims, strategies and challenges in proteomics; proteomics technologies: 2D-PAGE, isoelectric focusing, mass spectrometry, MALDI-TOF, yeast 2-hybrid system, proteome databases. protein-protein and protein-DNA interactions; protein chips and functional proteomics; clinical and biomedical applications of proteomics Outcome 5 Learn the techniques available to study the protein modifications, expression and their interactions K3 Objective 6 To acquire knowledge on functional analysis of macromolecules and its application K3 Transcriptome analysis for identification and functional annotation of gene, Contig assembly, chromosome walking and characterization of chromosomes, mining functional genes in genome, gene function-forward and reverse genetics; gene ethics; introduction to metabolomics, lipidomics, metagenomics and systems biology. k4 Outcome 6 Learn and explore the way of analyzing genes, proteins and their interactions with other small molecules. K4 K1-Remembering/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5-Evaluation/Evaluet, K6-Synthesis / Create Suggested Readings: • Primrose, S. B., Twyman, R. M., Primrose, S. B., & Primrose, S. B. (2006). <i>Principles of Gene Manipulation and Genomics</i> . Malden, MA: Blackwell Pub. • Liebler, D. C. (2002). Introduction to Proteomics: Tools for the New <i>Biology</i> . Totowa, NJ: Humana Press. • Campbell, A. M., & Heyer, L. J. (2003). <i>Discovering Genomics</i> , <i>Proteomics, and Bioinformatics</i> . San Francisco: Benjamin Cummings.		Unit V							
focusing, mass spectrometry, MALDI-TOF, yeast 2-hybrid system, proteome databases. protein- protein and protein-DNA interactions; protein chips and functional proteomics; clinical and biomedical applications of proteomics Outcome 5 Learn the techniques available to study the protein modifications, expression and their interactions K3 Objective 6 To acquire knowledge on functional analysis of macromolecules and its application K3 Transcriptome analysis for identification and functional annotation of gene, Contig assembly, chromosome walking and characterization of chromosomes, mining functional genes in genome, gene function- forward and reverse genetics, gene ethics; introduction to metabolomics, lipidomics, metagenomics and systems biology. K4 K1-Remembering/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5- Evaluation/Evaluate, K6-Synthesis / Create Suggested Readings: . Primrose, S. B., Twyman, R. M., Primrose, S. B., & Primrose, S. B. (2006).Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub. Primrose, S. B., Twyman, R. M., Primrose, S. B., Cools for the New Biology. Totowa, NJ: Humana Press. Campbell, A. M., & Heyer, L. J. (2003). Discovering Genomics, Proteomics, and Bioinformatics. San Francisco: Benjamin Cummings.	Objective 5 To gain knowledge on protein techniques								
Outcome 5 expression and their interactions K3 Unit VI Objective 6 To acquire knowledge on functional analysis of macromolecules and its application Transcriptome analysis for identification and functional annotation of gene, Contig assembly, chromosome walking and characterization of chromosomes, mining functional genes in genome, gene function- forward and reverse genetics, gene ethics; introduction to metabolomics, lipidomics, metagenomics and systems biology. Outcome 6 Learn and explore the way of analyzing genes, proteins and their interactions with other small molecules. K4 K1-Remembering/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5-Evaluation/Evaluet, K6-Synthesis / Create Suggested Readings: • Primrose, S. B., Twyman, R. M., Primrose, S. B., & Primrose, S. B. (2006). Principles of Gene Manipulation and Genomics. Maleen, MA: Blackwell Pub. • Liebler, D. C. (2002). Introduction to Proteomics: Tools for the New Biology. Totowa, NJ: Humana Press. • Campbell, A. M., & Heyer, L. J. (2003). Discovering Genomics, Proteomics, and Bioinformatics. San Francisco: Benjamin Cummings. Online Resources:	focusing, mass protein and p	s spectrometry, MALDI-TOF, yeast 2-hybrid system, proteome database protein-DNA interactions; protein chips and functional proteomics; cl	s. protein-						
Objective 6 To acquire knowledge on functional analysis of macromolecules and its application Transcriptome analysis for identification and functional annotation of gene, Contig assembly, chromosome walking and characterization of chromosomes, mining functional genes in genome, gene function- forward and reverse genetics, gene ethics; introduction to metabolomics, lipidomics, metagenomics Outcome 6 Learn and explore the way of analyzing genes, proteins and their interactions with other small molecules. K4 K1-Remembering/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5-Evaluation/Evaluate, K6-Synthesis / Create Suggested Readings: • Primrose, S. B., Twyman, R. M., Primrose, S. B., & Primrose, S. B. (2006).Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub. • Liebler, D. C. (2002). Introduction to Proteomics: Tools for the New Biology. Totowa, NJ: Humana Press. • Campbell, A. M., & Heyer, L. J. (2003). Discovering Genomics, Proteomics, and Bioinformatics. San Francisco: Benjamin Cummings. Online Resources:	Outcome 5		К3						
Transcriptome analysis for identification and functional annotation of gene, Contig assembly, chromosome walking and characterization of chromosomes, mining functional genes, contig assembly, function- for ward and reverse genetics; introduction to metabolomics, lipidomics, gene function- for ward and reverse genetics; introduction to metabolomics, lipidomics, gene function- for and everse genetics; introduction to metabolomics, lipidomics, gene outcome 6 Learn Learn and explore the way of analyzing genes, proteins and their interactions with other small molecules. K4 K1-Remembering/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5-Evaluation/Evaluet, K6-Synthesis / Create Suggested Readings: Primrose, S. B., Twyman, R. M., Primrose, S. B., & Primrose, S. B. (2006).Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub. Liebler, D. C. (2002). Introduction to Proteomics: Too		Unit VI							
chromosome walking and characterization of chromosomes, mining functional genes in genome, gene function- forward and reverse genetics, gene ethics; introduction to metabolomics, lipidomics, metagenomics and systems biology. Outcome 6 Learn and explore the way of analyzing genes, proteins and their interactions with other small molecules. K1-Remembering/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5- Evaluation/Evalua	Objective 6	To acquire knowledge on functional analysis of macromolecules and its app	olication						
Outcome 6 interactions with other small molecules. K4 K1-Remembering/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5-Evaluation/Evaluate, K6-Synthesis / Create Suggested Readings: • • Primrose, S. B., Twyman, R. M., Primrose, S. B., & Primrose, S. B. (2006).Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub. • Liebler, D. C. (2002). Introduction to Proteomics: Tools for the New Biology.Totowa, NJ: Humana Press. • Campbell, A. M., & Heyer, L. J. (2003). Discovering Genomics, Proteomics, and Bioinformatics. San Francisco: Benjamin Cummings. Online Resources:	chromosome w function- forw	valking and characterization of chromosomes, mining functional genes in gen vard and reverse genetics, gene ethics; introduction to metabolomics,	nome, gene						
 Evaluation/Evaluate, K6-Synthesis / Create Suggested Readings: Primrose, S. B., Twyman, R. M., Primrose, S. B., & Primrose, S. B. (2006).Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub. Liebler, D. C. (2002). Introduction to Proteomics: Tools for the New Biology.Totowa, NJ: Humana Press. Campbell, A. M., & Heyer, L. J. (2003). Discovering Genomics, Proteomics, and Bioinformatics. San Francisco: Benjamin Cummings. 	Outcome 6		K4						
 Primrose, S. B., Twyman, R. M., Primrose, S. B., & Primrose, S. B. (2006).<i>Principles of Gene Manipulation and Genomics</i>. Malden, MA: Blackwell Pub. Liebler, D. C. (2002). <i>Introduction to Proteomics: Tools for the New Biology</i>. Totowa, NJ: Humana Press. Campbell, A. M., & Heyer, L. J. (2003). <i>Discovering Genomics, Proteomics, and Bioinformatics</i>. San Francisco: Benjamin Cummings. Online Resources: 			lyze, K5 -						
• World Wide Web Service and Open Al		 Primrose, S. B., Twyman, R. M., Primrose, S. B., & Prime (2006). <i>Principles of Gene Manipulation and Genomics</i>. Ma Blackwell Pub. Liebler, D. C. (2002). <i>Introduction to Proteomics: Tools for Biology</i>. Totowa, NJ: Humana Press. Campbell, A. M., & Heyer, L. J. (2003). <i>Discovering Proteomics, and Bioinformatics</i>. San Francisco: Benjamin Cu. 	llden, MA: or the New Genomics,						

Course Outcome Vs Programme Outcome:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	S (3)	S (3)	M (2)	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)	S (3)			
CO2													
CO3	CO3 M (2) M (2) M (2) S (3) L (1) S (3) M (2) S (3) M (2) S (3)												
CO4	CO4 S (3) S (3) M (2) S (3) M (2) M (2) S (3) M												
CO5	CO5 S (3) S (3) M (2) M (2) S (3) S												
W.AV:	W.AV: 2.8 2.6 2.2 2.8 2 2.6 2.8 2.6 2.8 2.6												
			*3 –	Strong 2	2 – Mediı	1 m 1 – L	ow						

Course Outcome Vs Programme Specific Outcome:

CO													
CO1	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)							
CO2	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)							
CO3	S (3)	S (3)	S (3)	S (3)	M (2)	S (3)							
CO4	CO4 S (3) M (2) S (3) S (3) S (3) S (3)												
CO5 S (3) S (3) S (3) S (3) S (3) S (3)													
W.AV:	3	2.8	3	3	2.8	3							

Molecular Diagnostics

CourseObjectives

The objectives of this course are to sensitize students about recent advances inmolecularbiologyandvariousfacetsof molecular medicine, which has potential to profoundly alter many aspects of modern medicine including pre- or postnatal analysis of genetic diseases and identification of individuals predisposed to disease ranging from common cold to cancer. StudentLearningOutcomes Students should be able to understand various facets of molecular procedures and basics of genomics, proteomics and metabolomicsthatcouldbeemployedin early diagnosis and prognosis of human diseases.

	SEMESTER II											
Core	Course code: 501205	MOLECULAR DIGNOSTICS	Т	T Credits: 2								
Pre-requisite	E Fundamental knowledge in molecular biology Syllabus Revised 2022-22											
	Unit I											
Objective 1	To describe fundamenta human	To describe fundamental molecular principles of chromosomal level changes in human										
	rotein: An overview; chron al variability and genetical				ism: human							
Outcome 1	Gain fundamental knowl	edge in basics of genon	nics.		K2							
		Unit II										
Objective 2	To facilitate them to unde	erstand the advanced te	chnical conc	epts of Biotec	hnology							
biomarker dete	U	entals of modern b	disorders b biology an	y making usir d advanced	*							
	technologies improve st subject to solve current function of their critical t	issues on both a loca	•	•	К2							
		Unit III										
Objective 3	Understanding the mich antibiotic resistance in hu	-	lecular cha	nges and im	portance of							
	Direct detection and identification of pathogenic-organisms that are slow growing or currently lacking a system of <i>in vitro</i> cultivation as well as genotypic markers of microbial resistance to specific antibiotics.											
Outcome 3	Improve the skills of inv analyzing and interpretin problems hypothesis.	0 0 0		1	K3							

	Unit IV	
Objective 4	To differentiate and understand immune responses in relation to infecunderstand importance of inherited diseases.	tion and to
improvement mechanism of	y two inherited diseases for which molecular diagnosis has provided of quality of medical care: Fragile X Syndrome: Paradigm of new unstable triplet repeats, von-Hippel Lindau disease: recent acquisition ilial cancer syndromes.	mutational
Outcome 4	Appreciate their relevance for investigating specific contemporary biological questions.	K2
	Unit V	
Objective 5	Understand the basic concepts of human diseases and learn matching the infected patients.	herapies for
causing alterat for personalize lung cancer a	ecognized genetic aberrations in clinical samples from cancer patients; type ions revealed by next-generation sequencing of clinical isolates; predictive ed onco-therapy of human diseases such as chronic myeloid leukemia, co nd melanoma as well as matching targeted therapies with patients and dard systemic therapies. Quality oversight; regulations and approved testing	biomarkers blon, breast, preventing
Outcome 5	Understanding genetics genetic aberrations in clinical level will provide disease progression and hereditary importance. Find employment opportunities in R&D of Biotech/Pharma industry, Medical or hospital related organizations, Regulatory Agencies, & Academia.	K1
	ing/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/An	alyze, K5-
	 Suggested Readings: Campbell, A. M., & Heyer, L. J. (2006). Discovering Genom Proteomics, and Bioinformatics. San Francisco: Benjamin C Brooker, R. J. (2009). Genetics: Analysis & Principles. New McGraw-Hill. Glick, B. R., Pasternak, J. J., & Patten, C. L. (2010). Molecular Biotechnology: Principles and Applications of Recombinant Washington, DC: ASM Press. Coleman, W. B., & Tsongalis, G. J. (2010). Molecular Diage the Clinical Laboratorian. Totowa, NJ: Humana Press. Online Resources: World Wide Web Service and Open AI 	Cummings. 7 York, NY: 1lar t DNA.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	M (2)	S (3)	S (3)	M (2)	S (3)				
CO2	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)	M (2)	S (3)	M (2)	M (2)
CO3	S (3)	S (3)	M (2)	S (3)	S (3)	M (2)	S (3)	S (3)	S (3)	S (3)
CO4	S (3)	S (3)	M (2)	S (3)	S (3)	M (2)	M (2)	S (3)	S (3)	M (2)
CO5	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
W.AV:	3	2.6	2	2.8	2.6	2.4	2.6	3	2.4	2.6

Course Outcome Vs Programme Outcome:

Course Outcome Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)					
CO2	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)
CO3	S (3)	M (2)	S (3)	S (3)	S (3)	S (3)
CO4	S (3)	S (3)	S (3)	M (2)	S (3)	M (2)
CO5	S (3)					
W.AV:	3	2.8	2.8	2.8	2.8	2.8

*3 – Strong 2 – Medium 1 – Low

Research Methodology and Scientific Communication Skills

Course Objectives

The objectives of this course are to give background on history of science, emphasizing methodologies used to do research, use frame work of these methodologies for understanding effective lab practices and scientific communication and appreciate scientific ethics

Student Learning Outcomes

Students should be able to:

- Understand history and methodologies of scientific research, applying these to recent published papers;
- Understand and practice scientific reading, writing and presentations;
- Appreciate scientific ethics through case studies.

		SEMESTER II						
Core	CourseRESEARCH METHODOLOGY & SCIENTIFICTCredits: 2501206COMMUNICATION SKILLSCredits: 2		Hours:24					
Pre-requisite			Syllabus R	levised	2022-23			
		Unit I						
Objective 1	To give back, research.	ground information on history of	f science, a	nd methodolo	ogies to do			
Scientific meth	nod; Importance	nce methodologies: Empirical so e of manipulative experiments and ning; Descriptive science.						
Outcome 1			empirical	methods,	K1			
		Unit II						
Objective 2		rt of choosing ideal mentor for re- earch questions.	search and	how to develo	p the skills			
mentor; labora	Preparation for research: Choosing an ideal research mentor, Qualities, and values of a good mentor; laboratory and research questions; Criteria's and types of good research question; Steps for developing research question; Laboratory Note Book – Its importance and guidelines for maintenance.							
Outcome 2	-	enough knowledge about the qua pout framing of research ques e book.	-		K2			

	Unit III									
Objective 3	Objective 3 To provide framework for scientific communication and appreciate scientific ethics.									
effective com Importance of Presentation sl PowerPoint; S	mmunication: Concept and elements of effective communication; Steps for cle munication; Verbal and non-verbal; Avoiding breakdowns while communi f body language; Power of effective listening; Recognizing cultural diffe kills - formal presentation skills; preparing and presenting using over-head pro Scientific poster preparation & presentation; Participating in group discu ills for scientific research - web browsing for information search; Effective	icating; erences; ojector, ussions;								
Outcome 3	Get advanced knowledge on the elements of communication and computing knowledge.	K4								
	Unit IV									
Objective 4	To impart knowledge on the elements of effective scientific communication.									
scientific writi Scientific pub materials & m scientific pap	nmunication: Technical writing skills - types of reports; layout of a formal ing skills; Importance of communicating science; Plagiarism, software for plag plication writing: Elements of a scientific paper including abstract, introd ethods, results, discussion, references; Drafting titles and framing abstracts; Pub ers ; peer review process and problems; characteristics of effective te n; scientific presentations; ethical issues; scientific misconduct.	giarism; luction, olishing								
Outcome 4	Students understand the art of technical writing, plagiarism, and scientific misconduct	K4								
	ring/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Analyze aluate, K6 -Synthesis / Create	, K5-								
	 Suggested Readings: Valiela, I. (2001). Doing Science: Design, Analysis, and Communication of Scientific Research. Oxford: Oxford Universit Press. On Being a Scientist: a Guide to Responsible Conduct in Researce (2009). Washington, D.C.: National Academies Press. Gopen, G. D., & Smith, J. A. The Science of Scientific Writing. American Scientist, 78 (Nov-Dec 1990), 550-558. Mohan, K., & Singh, N. P. (2010). Speaking English Effectively. Macmillan India. 5. Movie: Naturally Obsessed, The Making of a Scientist. 	eh.								
	World Wide Web Service and Open AI									
	Course Outcome VS Programme Outcomes									

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L(1)	M (2)	M (2)	L(1)						
CO2	L(1)	L(1)	M (2)	L(1)	M (2)	M (2)	M (2)	M (2)	M (2)	M (2)
CO3	M (2)	M (2)	M (2)	L(1)	M (2)	L(1)	M (2)	M (2)	L(1)	L(1)
CO4	M (2)	L(1)	M (2)	M (2)	M (2)	L(1)	S (3)	S (3)	M (2)	M (2)
CO5	M (2)	S (3)	M (2)	L(1)	M (2)					
W. AV	1.6	1.6	1.8	1.6	1.8	1.6	2.2	2.2	1.6	1.6

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	L(1)	M (2)	M (2)	M (2)
CO2	M (2)	M (2)	M (2)	L(1)	M (2)
CO3	M (2)	L(1)	M (2)	L(1)	M (2)
CO4	L(1)	M (2)	M (2)	M (2)	L(1)
CO5	M (2)	M (2)	L(1)	S (3)	M (2)
W. AV	1.6	1.6	1.8	1.8	1.8

Course Outcome VS Programme Specific Outcomes

S – Strong (3), M-Medium (2), L- Low (1)

Course Objectives

Laboratory IV: Molecular Biology and Genetic Engineering

Credits

The objectives of this course are to provide students with experimental knowledge of molecular biology and genetic engineering.

Student Learning Outcomes Students

should be able to gain hands- on experience in gene cloning, protein expression and purification. This experience would enable them to begin a career in industry that engages in genetic engineering as well as in research laboratories conducting fundamental research.

	SEMESTER II											
Core	Course code: 501208	LBORATORY IV MOLECULAR BIOLOGY & GENETIC ENGINEERING	Р	Credits: 4	Hours:							
Pre-requisite	students wi	The objectives of this course are to provide students with experimental knowledge of Syllabus Revised 2022-23 molecular biology and genetic engineering.										
Unit I												
Objective 1	*	introductory information along w tion of auxotrophs, titration of phag	*		•							
b)Gluco c)Diaux 2.UV mutageno 3.Phage titre w	 1.Concept of lac-operon: a)Lactose induction of B-galactosidase. b)Glucose Repression. c)Diauxic growth curve of E.coli 2.UV mutagenesis to isolate amino acid auxotroph 3.Phage titre with epsilon phage/M13 4.Genetic Transfer-Conjugation, gene mapping 											
Outcome 1	system. K3&K											
		Unit II										
Objective 2	To learn ab confirmation	oout and perform techniques rel	ated to mo	olecular cloni	ng and its							
 Restrict Agarose Polyme Vector a Prepara 	ion Enzyme d e gel electroph rase Chain Re and Insert Liga tion of compe	action and analysis by agarose gel e ation			ĩciency							
		nsert by Colony PCR and Restrictio			-							

Outcome 2	Enable students to get hands-on experience in techniques of molecular	K4&K5								
	cloning and the confirmation techniques to ensure positive cloning.									
	Unit III									
Objective 3	To understand the principle and attain practical knowledge on techniques re	elated to								
	recombinant protein purification such as His-tagged protein purification using Ni-									
	NTA columns and other techniques such as SDS-PAGE and Southern hybridized	ization.								
1. Express	sion of recombinant protein, concept of soluble proteins and inclusion body for	ormation								
in <i>E. co</i>	oli, SDS-PAGE analysis									
2. Purifica	ation of His-Tagged protein on Ni-NTA columns									
	a)Random Primer labeling									
	b)Southern hybridization.									
Outcome 3	Helps students to understand and perform experiments related to K	K4 & K5								
	purification of recombinant proteins, specifically His-tagged proteins and									
	give insights in techniques such as SDS-PAGE and provides complete									
	knowledge on the way to overcome the challenges faced during protein									
	purification.									
	ring/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Analyz	ze, K5-								
Evaluation/Eva	aluate, K6 -Synthesis / Create									
	Suggested Readings:									
	Green, M. R., & Sambrook, J. (2012). Molecular Cloning: a Laboratory	-								
	Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Pres	ss.								
	Online Resources:									
	World Wide Web Service and Open AI									

Course Outcome Vs Programme Outcome:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	M (2)	M (2)	M (2)	L (1)	S (3)				
CO2	S (3)	S (3)	S (3)	M (2)	L (1)	S (3)				
CO3	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
W.AV:	3	2.6	2.3	2.3	1.3	3	3	3	3	3
		•	÷7	Stuang	• • • •	1 T		•		

*3 – Strong 2 – Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)					
CO2	S (3)					
CO3	S (3)					
W.AV:	3	3	3	3	3	3

Laboratory V: Immunology

Course Objectives

The objectives of this laboratory course are to develop an understanding about practical aspects of components of immune system as well as their function. Basic as well as advanced methods will be taught to detect different antigen and antibody interactions, isolation of different lymphocyte cells *etc.* and how they can be used in respective research work.

Student Learning Outcomes

- Students should be able to:Identify proper research lab working in area of their own interests;
 - Apply their knowledge and design immunological experiments to demonstrate innate, humoral or cytotoxic lymphocyte responses and figure out kind of immune responses in setting of infection (viral or bacterial) by looking at cytokine profile.

		SEMESTER II			
Core	Course code: 501209	LABORATORY V: IMMUNOLOGY	Р	Credits: 3	Hours:
Pre-requisite	Immunology practical		Syllabus R	evised	2022-23
		Unit I			
Objective 1	To gain the knowledge o and staining	f experiments related to	Blood samj	ples including	counting
serum separatio 2. Immuno 3. Blood g 4. Separat	on of animals, preparation on and storage. ohematology: Blood cell c grouping (ABO system and ion of mononuclear cells l smear identification of leuc <i>Gain knowledge on Bloo</i>	counts (Total RBC, WB d Rh grouping). by Ficoll-Hypaque and t cocytes by Giemsa stain d related experiments	C and differ heir cyropre	rential count of	
Objective 2	To aquire knowledge on	Unit II	1 1		
immuno	on of Antigen and Antib o diffusion. AGE, Immunoblotting, Do Apply their knowledge antigen-antibody reaction	ot blot assays. on designing experim			and Radial K3, K4
	antigen-antibody reaction	Unit III			
Objective 3	To acquire knowledge or isolation and purification		on, antigen a	ntibody reacti	ons,
 Demon Demon Demon 	stration of Phagocytosis o stration of Complement fi stration of Isolation and po stration of ELISPOT. stration of FACS.	xation test.	• •		n egg.
Outcome 3	Apply and design the im	munological experiment	ts for proper	research	K2
	ing/ Knowledge, K2 -Und luate, K6 -Synthesis / Cre	• • • • • • •	nt/Apply K 4	l-Analysis/Ana	alyze, K5 -

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO2	M (2)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO3	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
W.AV:	2.7	2.5	2	3	2	3	3	3	3	3

Course Outcome Vs Programme Outcome:

*3 – Strong 2 – Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		
CO1	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)		
CO2	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)		
CO3	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)		
W.AV:	3	3	3	3	3	3		
	*3 – Strong 2 – Medium 1 – Low							

Semester Three

Bioprocess Engineering & Technology

Credits

Course Objectives

The objectives of this course are to educate about students the fundamental concepts of bioprocess technology and its related thus applications, preparing them to meet the challenges of the new and emerging areas of biotechnology industry.

Student Learning Outcomes

Students should be able to:

- Appreciate relevance of microorganisms from industrial context;
- Give an account of design and operations of various fermenters;
- Present unit operations together with the fundamental principles for basic methods in production technique for bio-based products;
- Critically analyze any bioprocess from market point of view;
- Give an account of important microbial/enzymatic industrial processes in food and fuel industry.

		SEMESTER III					
Core	Course code: 501301	BIOPROCESS ENGINEERING AND TECHNOLOGY	Т	Credits: 3	Hours:36		
Pre-requisite	Fundamental concepts o technology and its relate	evised	2022-23				
		Unit I					
Objective 1	To make students to	learn the importance an industry.	d applicatio	n of microorga	anism in		
kinetics (an	ning and maintenance of example from each gr s); strain improvement for	oup, particularly with	h reference	e to industri	ally useful		
Outcome 1	Understand the fundamentals of microbiology in industrial level. K2						
		Unit II					
Objective 2	To impart knowledge	of upstream processing industrial sca		ioprocess tech	niques in		
· ·	essing: media formulation rocess; scale up and scale	÷		-			
Outcome 2	Understand the optimiza	tion and process of Ups	tream proce	essing.	K4		
		Unit III					
Objective 3	To understand the signif	icance of downstream p	rocessing in	product recov	very		
disruption; sep techniques, rev	insoluble products - f aration of soluble produ verse osmosis, ultra and storage and packaging.	cts: liquid-liquid extra	ction, precip	pitation, chroi	natographic		
Outcome 3	Student would be able to in industrial scale.	select the best method	ls to obtain	the products	K4		

	Unit IV
Objective 4	To acquire knowledge in the basics of potential bioprocess technique and their
	effective management in marketing the products
Isolation of m	icro-organisms of potential industrial interest; strain improvement; market analysis;
equipment and	I plant costs; media; sterilization, heating and cooling; aeration and agitation; bath-
process cycle	times and continuous cultures; recovery costs; water usage and recycling; effluent
treatment and	disposal.
Outcome 4	Analyze and understand the correlation between the manufacturing and K3
	marketing the industrial products.
	Unit V
Objective 5	Students will able to learn the different methods of food and beverage fermentation and their application in food industry
pickling, prod whey, molass	ermentation as a method of preparing and preserving foods; microbes and their use in ucing colours and flavours, alcoholic beverages and other products; process wastes- es, starch substrates and other food wastes for bioconversion to useful products; om lactic acid bacteria – production and applications in food preservation; biofuels and
Outcome 5	Learn how different fermented foods products been processed and K3 commercialized.
	ring/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5-
Evaluation/Eva	aluate, K6 -Synthesis / Create
	 Suggested Readings: Ramkrishna, D., Sengupta, S., Bandyopadhyay, S.D. and Ghosh, A. eds. (2021). Advances in Bioprocess Engineering and Technology: Select Proceedings ICABET 2020. Springer Singapore. Shuler, M. L., & Kargi, F. (2002). Bioprocess Engineering: Basic Concepts. Upper Saddle River, NJ: Prentice Hall.
	 Stanbury, P. F., & Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press.Blanch, H. W., & Clark, D. S. (1997). Biochemical Engineering. New York: M. Dekker.El-Mansi, M., & Bryce, C. F. (2007). Fermentation. Microbiology and Biotechnology. Boca Raton: CRC/Taylor & Francis.
	Online Resources:
	World Wide Web Service and Open AI

Course Outcome Vs Programme Outcome:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M (2)	M (2)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	M (2)	L (1)
CO2	S (3)	S (3)	S (3))	S (3)	L (1)	S (3)				
CO3	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)	S (3)	L (1)	S (3)	M (2)
CO4	S (3)	M (2)	S (3)	L (1)	S (3)	S (3)	L (1)	S (3)	S (3)	S (3)
CO5	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)	S (3)	M (2)	S (3)	M (2)
W.AV:	2.8	2.4	2.6	2.6	2.2	3	2.6	2.4	2.8	2.2

*3 – Strong 2 – Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)	S (3)	S (3)	S (3)	L (1)	M (2)
CO2	S (3)	S (3)	L(1)	S (3)	S (3)	S (3)
CO3	L (1)	S (3)				
CO4	S (3)	L(1)	M (2)	S (3)	M (2)	S (3)
CO5	S (3)	M (2)	S (3)	L (1)	S (3)	L(1)
W.AV:	2.6	2.4	2.4	2.6	2.4	2.4

Emerging Technologies

Course Objectives

This course is broad-based in nature encompassing several new technologies that current experimental researchers are employing to probe complex system biology questions in life-sciences. The Objectives of this course are to teach basics of the new principles to students so as to appreciate current-day research toolkit bette

Student Learning Outcomes

Students should be to learn history, theoretical basis and basic understanding of latest technologies in area of biotechnology. They should also be able to learn about various applications of these technologies. The students may also learn one application in depth through an assignment and/or seminar.

		SEMESTER III			
Core	Course code: 501302	EMERGING TECHNOLOGIES	Т	Credits: 2	Hours:28
Pre-requisite	Concepts of Eme	erging Technologies	Sylla Revi		2022-23
		Unit I			
Objective 1	To obtain knowledg its various application	e on advancement and function	of di	fferent mic	roscopic technique and
Basic Microsco	py: Light Microscop	y: lenses and microscopes, reso	lutior	: Rayleigh	's Approach,
Darkfield; Phase	e Contrast; Differenti	al Interference Contrast; fluores	cence	and fluore	escence microscopy:
what is fluoresce	ence, what makes a n	nolecule fluorescent, fluorescen	ce mi	croscope; c	optical arrangement,
light source; filte	er sets: excitation filt	er, dichroic mirror, and barrier,	optic	al layout fo	r image capture; CCD
-		recording color; three CCD eler	-	•	• ·
boosting the sign	-				1 /
and point spread pinhole and sign	function, light source al channel configura	icroscope: scanning optical mic ce: gas lasers & solid-state, prim tions, detectors; pixels and voxe	ary b els; co	eamsplitter ontrast, spar	; beam scanning, tial sampling: temporal
		ichannel images. Advanced flue			· · · · ·
		orescence Resonant Energy Tra			
-		nescent Wave Microscopy; Nea	ar-Fie	ld and Eva	nescent Waves, Total
Internal Reflecti	on Microscopy; Nea				
Outcome 1	Gain knowledge on in various research	microscopic techniques and the field.	ir ap	plications	K2, K4, K5
		Unit II			,,
Objective 2	To gain knowledge	about mass spectroscopy metho	ds an	d its applic	ations
		ers/overview MS; FT-ICR and			
•	· •	proteomics; interaction proteo	mics,	mass spe	ctroscopy in structural
biology; imaging	g mass spectrometry.				
Outcome 2	Understading conce	pts and application of spectros	сору		K2, K5

	Unit III						
Objective 3	To understand the basic concepts of high throughput analysis using approach	systems biology					
0 0 1	it screens in cellular systems, target identification, validation of exponents data, bioinformatics analyses, mathematical modeling an	^					
Outcome 3	Understanding the concepts and application systems biology	K2, K4					
	Unit IV						
Objective 4	To acquire knowledge on advanced methods						
-	n methods, solution & solid-state NMR, cryo-electron microscopy, sr nic force microscopy.	nall- angle X-ray					
Outcome 4	Learn the concepts and application of structural application	K3, K4					
	Unit V						
Objective 5	To educate the application of CRISPR-CAS						
development of	iscovery, elucidation of the mechanism including introduction to all applications for in vivo genome engineering for genetic studies, pro- tion therapeutic method.	· · ·					
Outcome 5	Learn to understand the application of CRISPR-CAS	K2, K3					
	ng/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analys luate, K6 -Synthesis / Create	is/Analyze, K5 -					
	 Suggested Readings: Old, R. W., Primrose, S. B., & Twyman, R. Mof Gene Manipulation: an Introduction to Gene Oxford: Blackwell Scientific Publications. Green, M. R., & Sambrook, J. (2012). Molect Laboratory Manual. Cold Spring Harbor, NY Laboratory Press. Brown, T. A. (2006). Genomes (3rd ed.). New Science Pub. Selected papers from scientific journals, partise Science. 5. Technical Literature from Stratagene, New England Biolab etc. Online Resources: 	netic Engineering. ular Cloning: a ': Cold Spring Harbor w York: Garland icularly Nature &					
	World Wide Web Service and Open AI						

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO2	M (2)	S (3)	S (3)	S (3)	M (2)	S (3)				
CO3	M (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO4	S (3)	M (2)	S (3)	S (3)	M (2)	S (3)				
CO5	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
W.AV:	2.8	2.6	2.4	3	2	3	3	3	3	3

Course Outcome Vs Programme Outcome:

Course Outcome Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)					
CO2	S (3)					
CO3	S (3)					
CO4	S (3)					
CO5	S (3)					
W.AV:	3	3	3	3	3	3

Critical Analysis of Classical Papers

Credits

Course Objectives

The objectives of this course are to familiarize students with classic literature to make them appreciate how groundbreaking discoveries were made without, necessarily, use of high-end technologies.

Student Learning Outcomes

Students should be able to train in the exercise of hypothesis building and methods of addressing the hypothesis with readily available technology.

SEMINAR ONLY; Course Code: 501303

How does the Course Module work? Students may be divided in groups and each group may be responsible for one classical paper. Each week there may be a 1.5 hour presentation cum discussion for each of the papers. At the end of the semester each student will be asked to write a mini-review (2-3pages long)on anyone classical paper, other than the one he/she presented/discussed.

A list of sixteen classic papers and some suggested reference materials:

Syllabus	1.	Studies on the chemical nature of the substance inducing transformation of
Molecular		Pneumococcal types: Induction of transformation by a deoxy ribonucleic acid fraction isolated from <i>Pneumococcus</i> type III.
Biology		Avery OT, Macleod CM, McCarty M.; J Exp Med. 1944Feb1;79(2):137-58.
		Note: This paper demonstrates that DNA is the transforming Principle originally
		described by Fredrick Griffith.
	2.	Independent functions of viral protein and nucleic aciding row tho fbacteriop hage
		Hershey AD and Chase M.; J Gen Physiol. 1952 May;36(1):39-56.
		Note: Note: This paper demonstrates that DNA, and not protein, component of phages enter bacterial cells.
	3.	Molecular structure of nucleic acids; a structure for deoxy ribosenucleic
		acid Watson JD and Crick FH; Nature. 1953 Apr 25;171(4356):737-8
		Note: In this one page paper Watson and Crick first described the structure of DNA double helix
		Studyhelp-Watson Crick Nature 1953 annotated
	4.	Transposable mating type genes in <i>Saccharomyces cerevisiae</i>
		James Hicks, Jeffrey N. Strathern & AmarJ.S.Klar;Nature282,478-483,1979
		Note: Thispaperprovided evidence for 'cassette hypothesis' of yeast mating type
		switches <i>i.e.</i> inter conversion of mating types in yeast (S. cerevisiae) occurs by
		DNA rearrange ment.
	5.	Messelson & Stahl experiment demonstrating semi-conservative replication of
		DNA. Meselson Mand Stahl FW.; Proc Natl Acad Sci USA. 1958Jul15;44(7):671-
		82 Note: The experiment demonstrating semi-conservative mode of DNA
		replication is referred to as "the most beautiful experiment in biology"
	6.	<i>In vivo</i> alteration of telomerese quences and senescence caused by mutated
		Tetrahymena telomerase RNAs
		Guo-Liang Yu, John D. Bradley, Laura D. Attardi & Elizabeth H. Blackburn; Nature 344, 126-132, 1990
		Note: This paper demonstrates that the telomerase contain the template for
		telomere synthesis
Syllabus	1.	A protein-conducting channel in the endoplasmic reticulum
Cell Biology		SimonSMANDBlobelG.;Cell.1991May3;65(3):371-80
		Note: This paper demonstrates the existence of a protein conducting channel Study help - A brief history of Signal Hypothesis

	 Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway Novick P, Field C, Schekman R.; Cell.1980 Aug;21(1):205-15 Note: In this groundbreaking paper Randy Schekman's group used a mutagenesis screenforfastsedimentingyeastmutantstoidentifygenesinvolvedincellsecretion Ayeastmutantdefectiveatanearlystageinimportofsecretoryproteinprecursors into the endoplasmic reticulum Deshaies RJ and Schekman R.; J CellBiol.1987Aug;105(2):633-45 	
	 Note: Using another yeast mutation screen Schekman lab identifiesSec 61,a component of ER protein Conducting Channel (PCC) Suggested reference paper- A bio chemical assay for identification of PCC. 4. Reconstitution of the Transport of Protein between Successive Compartments of the Golgi Balch WE, Dunphy WG, BraellWA, Rothman JE.;Cell.1984Dec;39(2Pt1):405-16 Note: This paper describes setting up of an <i>in vitro</i> reconstituted system for transport between golgi stacks which eventually paved the way for identification of 	
	 most of the molecular players involved in these steps including NSF, SNAP <i>etc.</i> 5. A complete immunoglobulin gene is created by somatic recombination Brack C, Hirama M, Lenhard-Schuller R, Tonegawa S.; Cell. 1978 Sep;15(1):1-14 Note: This study demonstrates DNA level molecular details of somatic rearrangement of immunoglobulin gene sequences leading to the generation of functionally competent antibody generating gene following recombination. 6. Anovelmultigenefamilymayencodeodorantreceptors:amolecularbasisfor odor 	
	 recognition Buck L and Axel R; Cell.1991Apr 5; 65(1):175-87 Note: This paper suggests that different chemical odorants associate with different cell-specific expression of a trans-membrane receptor in <i>Drosophila</i> olfactory epithelium where a large family of odorat receptors is expressed. 7. Kinesin walks hand-over-hand Yildiz A, Tomishige M, Vale RD, Selvin PR.;Science.2004Jan30;303(5658):676-8 Note: This paper shows that kinesin motor works as a two-headed dimeric motor walking hand-over-hand rather than like an inchworm on microtubule tract using 	
Syllabus Developmental Biology/Genetics	 the energy of ATP hydrolysis. Mutations affecting egment number and polarity in <i>Drosophila</i> Christiane Nusslein-Volhard and Eric Weischaus; Nature 287, 795-801, 1980 Note: This single mutagenesis screen identified majority of the developmentally important genes not only in flies but in other metazoans as well. Information for the dorsal—ventral pattern of the <i>Drosophila</i> embryois stored as maternal mRNA Anderson KV and Nüsslein-Volhard C;Nature.1984Sep20-26;311(5983):223-7 Note: This landmark paper demonstrated that early dorsal-ventral pattern information is stored as maternal mRNA in flies and devised the method of identifying genes encoding such genes Hedgehogsignallinginthemouserequiresintraflagellartransportproteins Huangfu D, Liu A, Rakeman A S, Murcia N S, Niswander L, Anderson KV.; Nature. 2003 Nov 6;426(6962):83-7 Note: One of the architects of original fly mutagenesis screens conducted a mouse mutagenes screen which identified a gene Kif3 a as a major component of hedgehog signaling pathway. Eventually this discovery revolutionizes our understanding of mechanisms of action of signaling pathways by demonstrating central role of Cilia in it. Suggested Reference paper-Design and execution of a embryonic lethal mutation screen in mouse. 	

Bioentrepre - neurship

Course Objectives

Research and business belong together and both are needed. In a rapidly developing life science industry, there is an urgent need for people who combine business knowledge with the understanding of science & technology. Bio-entrepreneurship, an interdisciplinary course, revolves around The central theme of how to manage and develop life science companies and projects. The objectives of this course are to teach students about concepts of entrepreneurship including identifying a winning business opportunity, gathering funding and launching a business, growing and nurturing the organization and harvesting the rewards.

Student Learning Outcomes

Students should be able to gain entrepreneurial skills, understand the various operations involved in venture creation, identify scope for entrepreneurship in biosciences and utilize the schemes promoted through knowledge centres and various agencies. The knowledge pertaining to management should also help students to be able to build up a strong network within the industry.

SEMESTER III									
Core	Course code: 501304	BIO-ENTREPRENEURSHIP	Т	Credits: 2	Hours:32				
Pre- requisite	Svllabus Revised								
		Unit I							
Objective	1 To introduce the	ne concept of Bio-entrepreneurship a	and its busi	ness opportur	nities.				
between th operations	ne sub-industries of t of bio-sector firms:	entrepreneurship, Types of bio-indu he bio-sector (e.g. pharmaceuticals Factors shaping opportunities for in nplications of those opportunities.	vs. Industri	al biotech), S	trategy and				
Outcome	1 Get introduced industries in b		vpes of of l	bio-	K2& K4				
		Unit II							
Objective		knowledge of relevant strategies in			enting.				
Entreprene	eurship development	g bio-firms and the relevant tools for programs of public and private ages of patenting & commercialization s	ncies (MSN	<i>,</i>	RAC, Make				
Outcome	· · ·	rehensive knowledge about Entrepr patenting & commercialization stra	-	development	K4				
		Unit III							
Objective		tudents' knowledge with the strateg of agreements.	ies and pro	cess of negoti	iation and				
governmen (market co manageme	nt and regulatory aut onditions & segment ent of customer need	to the market (strategies and process horities), Pricing strategy, Challeng s; developing distribution channels, s). Basic contract principles, different venture and development agreements	es in marke the nature, ent types of	eting in bio bu analysis and `agreement ar	usiness				
Outcome	3 Student would	be able to select the best strategies	to market p	products.	K3&K4				

	Unit IV							
Objective 4	To acquire knowledge in the basics of business plan and partnership							
financial mana	preparation including statutory and legal requirements, Business feasibility study, agement issues of procurement of capital and management of costs, Collaborations & formation technology.							
Outcome 4	Analyze and understand the business feasibility and financial management. K3							
	Unit V							
Objective 5	Students will able to learn the different technologies to assess and upgrade the business status.							
control & tran	assessment, development & upgradation, Managing technology transfer, Quality sfer of foreign technologies, Knowledge centers and Technology transfer agencies, of regulatory compliances and procedures (CDSCO, NBA, GCP, GLA, GMP).							
Outcome 5	Dutcome 5 <i>Learn to assess the technologies and regulatory process in upgrading the</i> K2&K <i>business.</i>							
Evaluation/Ev	 aluate, K6-Synthesis / Create Suggested Readings: Adams, D. J., & Sparrow, J. C. (2008). Enterprise for Life Scientists: Developing Innovation and Entrepreneurship in the Biosciences. Bloxham: Scion. Shimasaki, C. D. (2014). Biotechnology Entrepreneurship: Starting, Managing, and Leading Onetti, A., & Zucchella, A. Business Modeling for Life Science and Biotech Companies: Creating Value and Competitive Advantage with the Milestone Bridge. Routledge. Jordan, J. F. (2014). Innovation, Commercialization, and Start-Ups in Life Sciences. London: CRC Press. Desai, V. (2009). The Dynamics of Entrepreneurial Development and Management. New Delhi: Himalaya Pub. House. 	1						
	Online Resources:							
	World Wide Web Service and Open AI							

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M (2)	M (2)	S (3)	S (3)	S (3)	S (3)	M (2)	S (3)	M (2)	L (1)
CO2	S (3)	S (3)	S (3)	S (3)	L (1)	S (3)				
CO3	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)	M (2)	L (1)	M (2)	M (2)
CO4	S (3)	M (2)	S (3)	M (2)	S (3)	S (3)	L (1)	S (3)	S (3)	S (3)
CO5	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)	S (3)	M (2)	S (3)	M (2)
W.AV:	2.8	2.4	2.6	2.8	2.2	3	2.2	2.4	2.6	2.2

^{*3 –} Strong 2 – Medium 1 – Low

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)	S (3)	S (3)	S (3)	M (2)	L (1)
CO2	L (1)	S (3)				
CO3	M (2)	S (3)	S (3)	L (1)	S (3)	M (2)
CO4	S (3)	S (3)	L(1)	S (3)	S (3)	S (3)
CO5	M (2)	S (3)	S (3)	M (2)	S (3)	M (2)
W.AV:	2.2	3	2.6	2.4	2.8	2.2

Course Outcome Vs Programme Specific Outcome:

Intellectual Property Rights, Biosafety and Bioethics

Course Objectives The objectives of this course are:

- To provide basic knowledge on intellectual property rights and their implications in biological research and product development;
- To become familiar with India's IPR Policy;
- To learn Biosafety of products derived from biotechnology and regulation of such products;
- To become familiar with ethical issues in biological research..

Student Learning Outcomes On completion of this course, students should be able to:

- Understand the rationale for and against IPR and especially patents;
- Understand why India has adopted an IPR Policy and be familiar with broad outline of patent regulations;
- Understand different types of intellectual property rights in general and protection of products derived from biotechnology research and issues related to application and obtaining patents;
- Gain knowledge of biosafety and risk assessment of products derived from recombinant DNA research and environmental release of genetically modified organisms,

national and international regulations; Understand ethical aspects related to biological,biomedical, healthcare and biotechnology research

SEMESTER III										
Core	Course code: 501305	IPR, BIOSAFETY & BIOETHICS	Т	Credits: 2	Hour	·s:25				
Pre- requisite	Syllabus Revised									
		Unit I								
Objective 1 To provide basic knowledge on International organizations for protecting intellectual properties, and to understand the implications of intellectual property rights in biological research and product development.										
	Ũ	eement on Trade and Tariff (/	-	-				
(WTO); Establ	lishment and functions	s of GATT, WTO & WIPO; Phy	ysica	l & Intellec	tual Property	; Various				
• •		, and ID); Concept of 'prior art	'; Pla	nt variety p	rotection and	d Farmers				
rights act; TRI	PS.									
Outcome 1		stand the importance of estab ations such as WTO and WIP				K1				
		Unit II								
Objective 2	To become familiar v patents	vith IPR policy in India and to u	nder	stand the tec	chnique of fil	ing				
Patenting: Di	fferent types of intelle	ctual property rights (IPR) - Pa	tents	, Trade mar	·k, Trade sec	ret, Copy				
-	•• •	ts; Biotechnological examples of and its recent amendments; W								
and complete	• • •	ing; Patent application filing; T sure/non-disclosure; Biopiracy	• •							
Outcome 2										

	Unit III							
Objective 3	To learn the importance of biosafety cabinets and biosafety levels.							
organisms; Bio guidelines for	osafety - introduction; Different Levels of Biosafety; Biological Safety Cabinets; GRAS osafety levels of specific microorganisms; Guidelines for rDNA research activities; General research in transgenic plants; Good Laboratory Practices (GLP); Concepts of familiarity and ivalence; GMOs & LMOs; Risk analysis of transgenic plants.							
Outcome 3	Students will get advance knowledge on the functions of biosafety cabinets and K4							
	guidelines for recombinant DNA research activities. Unit IV							
Objective 4	To educate the functioning of international regulations, treaties, and frame work to carryout biotechnology research.							
National and international regulations: International regulations – Cartagena Biosafety protocol (CAB), OECD consensus documents and Codex Alimentarius; Role of regulatory framework – RCGM, GEAC, IBSC; Draft bill of Biotechnology Regulatory Authority of India; Standard Operating Procedures; GM labeling – Food Safety and Standards Authority of India (FSSAI).Outcome 4Students will understand the role of various regulations and safety aspects of biotechnology products.K4								
	Unit V							
Objective 5	To become familiar with ethical issues related to animals, plants, and microorganisms.							
	Bioethics: Bioethics - Introduction. Animal Rights, General issues related to environmental release of transgenic plants, animals, and microorganisms. Ethical issues related to research in embryonic stem cell cloning.							
Outcome 5	Students acquire advance knowledge on the role of bioethics in animal research.K5Also critically analyse the ethical issues related to plant and animal research.							
	ing/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Analyze, K5 - luate, K6 -Synthesis / Create							
	Suggested Readings:							
	 1.Rupinder Tiwari and Mamta Bharadwaj (2021) Intellectual property A prime for academia, Publication Bureau, Panjab University Jatinder Moudgil Manager Press Panjab University, Chandigarh-160014, India. ISBN: 81-85322-92-9 WIPO Intellectual Property Hand Book (2008). WIPO Publication No.489 (E) ISBN 978-92-805-1291-5 Ganguli, P. (2001). <i>Intellectual Property Rights: Unleashing the Knowledge Economy</i>. 							
	 New Delhi: Tata McGraw-Hill Pub. <i>National IPR Policy</i>, Department of Industrial Policy & Promotion, Ministry of Commerce, GoI Kuhse, H. (2010). <i>Bioethics: an Anthology</i>. Malden, MA: Blackwell. World Trade Organisation. http://www.wto.org Recombinant DNA Safety Guidelines, 1990 Department of Biotechnology, Ministry of Science and Technology, Govt. of India. Retrieved from http://www.envfor.nic.in/ divisions/csurv/geac/annex-5.pdf Wolt, J. D., Keese, P., Raybould, A., Fitzpatrick, J. W., Burachik, 							
	M., Gray, A., Wu,							

•	F. (2009). Problem Formulation in the Environmental Risk Assessment for Genetically Modified Plants. Transgenic Research, 19(3), 425-436. doi:10.1007/s11248-009-9321-9
•	Guidelines for Safety Assessment of Foods Derived from Genetically Engineered Plants. 2008.
•	Guidelines and Standard Operating Procedures for Confined Field Trials of Regulated Genetically Engineered Plants. 2008. Retrieved
•	from http://www.igmoris.nic.in/guidelines1.asp Alonso, G. M. (2013). Safety Assessment of Food and Feed Derived from GM Crops: Using Problem Formulation to Ensure
•	<i>"Fit for Purpose" Risk Assessments.</i> Retrieved from http://biosafety.icgeb.org/inhousepublicationscollectionbiosafetyre
0-1	views.
Unit	ne Resources:
•	World Wide Web Service and Open AI

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L (1)	M (2)	L (1)	M (2)	L (1)	M (2)	L (1)	S (3)	M (2)	S (3)
CO2	M (2)	L (1)	M (2)	L (1)	M (2)	M (2)	M (2)	M (2)	S (3)	S (3)
CO3	M (2)	M (2)	L (1)	L (1)	M (2)	L (1)	M (2)	M (2)	M (2)	L (1)
CO4	M (2)	L (1)	M (2)	M (2)	M (2)	L (1)	M (2)	S (3)	M (2)	M (2)
CO5	M (2)	S (3)	M (2)	S (3)	M (2)					
W.AV:	1.8	1.6	1.6	1.6	1.8	1.6	2.0	2.4	2.4	2.2

*3 - Strong 2 - Medium 1 - Low

Course Outcome Vs Programme	e Specific Outcome:
------------------------------------	---------------------

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M (2)	M (2)	L (1)	M (2)	M (2)
CO2	M (2)	M (2)	L (1)	M (2)	M (2)
CO3	S (3)	L (1)	M (2)	L (1)	S (3)
CO4	L (1)	M (2)	M (2)	M (2)	L (1)
CO5	L (1)	M (2)	M (2)	S (3)	M (2)
W. AV	1.8	1.8	1.6	2.0	2.0

Course Objectives

Project Proposal Preparation & Presentation

The purpose of this course is to help students organize ideas, material and objectivesfortheirdissertationandtobegindevelopmentofcommunicationskillsandto prepare the students to present their topic of research and explain its importance to their fellow classmates and teachers.

Student Learning Outcomes Students should be able to demonstrate the following abilities:

- Formulateascientificquestion;
- Presentscientificapproachtosolve the problem;
- Interpret, discussand communicate scientific results in written form;
- Gainexperienceinwritingascientific proposal;
- Learnhowtopresentandexplain their research findings to the audienceeffectively.

Laboratory VI: Bioprocess Engineering & Technology

Course Objectives

The objectives of this laboratory course are to provide hands-on training to students in upstream and downstream unit operations.

Student Learning Outcomes

Students should be able to:

- Investigate, design and conduct experiments, analyze and interpret data, and apply the laboratory skills to solve complex bioprocess engineering problems;
- Apply skills and knowledge gained will be useful in solving problems typical of bio industries and research.

		SEMESTER III					
Core	Course code: 501308	LABORATORY VI: BIOPROCESS ENGINEERING & TECHNOLOGY	Р	Credits: 4	Hours:		
Pre-requisite	Technical and hands-or applicable to help in ind	Revised	2022-23				
	Unit I						
Objective 1	Understanding the impo	rtance of basic microbiol	ogy techniq	ues.			
Basic Microbiology techniques a) Scale up from frozen vial to agar plate to shake flask culture. b)Instrumentation: Microplate reader, spectrophotometer, microscopy. c)Isolation ofmicroorganisms from soil samples.Isolation of							
Outcome 1	Gain fundamental knowledge in basic microbiology techniques K4						
Unit II							
Objective 2	Objective 2 To make the students aware of importance of bioreactor techniques						
of enzyme assa	• •	ioreactor and sterilization. enzyme activity and speci ity.	,		-		
Outcome 2	Understand the basis of various enzyme assay conditions from theK4perspective of biochemical reactions.						
		Unit III					
Objective 3 To enable the students to acquire knowledge on the fundamental aspects of Biotechnology such as Biochemistry, Cell Biology, Microbiology, Environmental Biotechnology and Molecular Biology							
Fermentation	a) Batch. b) Fed-batch. c) Continuous.					
Outcome 3	Acquire knowledge in th in day to day life	ne basic enzymatic reactio	ons that play	[,] a vital role	К2		

	Unit IV								
Objective 4	To acquire knowledge in basic techniques separation techniques.								
-	ns a) Microfiltrations: Separation of cells from broth. b) Bioseparations: Vario	ous							
chromatograph	chromatographic techniques and extractions.								
Outcome 4	Understand the applications of fundamental sciences for various field of	K3							
biology in the context of Biotechnology.									
	Unit V								
Objective 5	To facilitate them to understand the advanced concepts of Biotechnology s students can take up any challenging career in this field	so that the							
•	a) Bioseparations: Various chromatographic techniques and extractions, Fraction analytical techniques such as HPLC, FPLC, GC-MS, for measurement oducts/substrates.								
Outcome 5	5 <i>Learning the fundamentals of modern biology and advanced technologies improve student's capacity to apply their knowledge of a subject to solve current issues on both a local and global scale is a function of their critical thinking abilities.</i>								
	ring/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Anal aluate, K6 -Synthesis / Create	yze, K5-							
	 Suggested Readings: 1. Shuler, M. L., & Kargi, F. (2002). Bioprocess Engineering: Concepts. Upper Saddle River, NJ: Prentice Hall. 2. Stanbury, P. F., & Whitaker, A. (2010). Principles of Ferme Technology. Oxford: Pergamon Press. 3. Blanch, H. W., & Clark, D. S. (1997). Biochemical Engineer New York: M. Dekker. 4. Bailey, J. E., & Ollis, D. F. (1986). Biochemical Engineerin Fundamentals. New York: McGraw-Hill. 5. El-Mansi, M., & Bryce, C. F. (2007). Fermentation Microbi Biotechnology. Boca Raton: CRC/Taylor & Francis. 	entation ering. ng							
	World Wide Web Service and Open AI								

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)	S (3)	M (2)	S (3)	S (3)
CO2	M (2)	M (2)	S (3)	M (2)	S (3)	M (2)	S (3)	S (3)	S (3)	S (3)
CO3	S (3)	M (2)	S (3)	S (3)	M (2)	S (3)	S (3)	S (3)	S (3)	M (2)
CO4	S (3)	S (3)	S (3)	S (3)	M (2)	S (3)	S (3)	S (3)	M (2)	S (3)
CO5	S (3)	S (3)	M (2)	M (2)	S (3)					
W.AV:	2.8	2.4	2.6	2.6	2.4	2.8	3	2.8	2.8	2.8

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
C01	S (3)					
CO2	S (3)	M (2)	S (3)	M (2)	S (3)	S (3)
CO3	S (3)	S (3)	M (2)	S (3)	S (3)	M (2)
CO4	M (2)	S (3)				
CO5	S (3)					
W.AV:	2.8	2.8	2.8	2.8	2.8	2.8
	2.8		2.8	2.8	2.8	-

Course Outcome Vs Programme Specific Outcome:

^{*3 –} Strong 2 – Medium 1 – Low

Laboratory VII: Bioinformat ics

CourseObjectives

The aim of this course is to provide practical training in bioinformatic methodsincludingaccessingmajorpublic sequence databases, use of different computational tools to find sequences, analysis of protein and nucleic acid sequences by various software packages. StudentLearningOutcomes On completion of this course, students should be able to:

- Describecontentsandpropertiesof most important bioinformatics
- databases;
 Perform text- and sequence-based searches and analyze and discuss resultsinlightofmolecularbiological knowledge;
- Explain major steps in pairwise and multiplesequencealignment, explain principle and execute pairwise sequence alignment by dynamic programming;
- Predict secondary and tertiary structuresofproteinsequences.

SEMESTER III							
Core	Course code: 501309	LABORATORY VII BIOINFORMATICS	Р	Credits: 2	Hours:		
Pre-requisite	The aim of this course is training in bioinformati accessing major public of different computation sequences, analysis of p sequences by various so	Syllabus Revised 2022-23					
Unit I							
Objective 1	Objective 1To provide introduction, practical knowledge and helps students to understand bioinformatics and information regarding various biological databases.						
 Using NCBI and Uniprot web resources. Introduction and use of various genome databases. Sequence information resource: Using NCBI, EMBL, Genbank, Entrez, Swissprot/ TrEMBL, UniProt. Similarity searches using tools like BLAST and interpretation of results. 							
Outcome 1	Enables students to und biological databases an	erstand and perform data d BLAST analysis.	base search	in various	K1&K2		
Unit II							
Objective 2To understand and provide practical knowledge on Multiple sequence analysis and to equip students with practical knowledge on how to perform phylogenetic analysis of various DNA and protein sequences.							
-	sequence alignment usin	•					
6. Phylogen	etic analysis of protein a	nd nucleotide sequences.					
Outcome 2		l DNA sequence analyses e on DNA sequencing tech	U	n therotical	K1, K2& K3.		

	Unit III
Objective 3	To learn about and perform prediction of gene and RNA structures and also to design primers for PCR techniques and prediction of restriction sites in a gene sequence.
8. Using RI	ene prediction methods (GRAIL, Genscan, Glimmer). NA structure prediction tools. prious primer designing and restriction site prediction tools.
Outcome 3	Facilitates students to perform gene, RNA structure prediction and designing of primers to best suit their PCR protocol and to predictK1, K2 & K3restriction sites of a gene or DNA sequence.K3
	Unit IV
Objective 4	To gain practical knowledge on protein modelling, the softwares used for protein modelling. Also helps to attain practical experience on <i>in silico</i> mutation of protein and prediction of miRNA.
11. Constru 12. Homolo 13. Use of 1	different protein structure prediction databases (PDB, SCOP, CATH). ction and study of protein structures using Deepview/PyMol. ogy modelling of proteins. ools for mutation and analysis of the energy minimization of protein structures. niRNA prediction, designing and target prediction tools.
K1-Remember	Will aid students to practically analyze and understand various proteinK1, K2,structures and provide practical insights related to protein structureK3 & K4.modelling and to perform analyses related to mutations and miRNA designand prediction .ing/ Knowledge, K2-Understanding, K3-Applicant/Apply K4-Analysis/Analyze, K5-K5-
Evaluation/Eva	aluate, K6 -Synthesis / Create
E	 Suggested Readings: 1.Ashok Kumar Sharma (2012). Practical Bioinformatics. Oxford UniversityPress.
	 2.Cynthia Gibas, Per Jambeck (2001). Developing Bioinformatics Computer Skills, O'Reilly Media,Inc., 3.David Edwards, Jason Eric Stajich, David Hansen, (2009). Bioinformatics: Tools and Applications, Springer. 4.David W Mount (2004). Bioinformatics: Sequence and genome analysis, Cold spring harbor laboratory press, 2nd edition, 5.Stanbury, P. F., & Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press. 6.Practical Bioinformatic (2013) by Michael J Agostino,Garland Science, Taylor & Francis Group, LLC Online Resources: World Wide Web Service and Open AI

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	S (3)	M (2)	M (2)	M (2)	S (3)				
CO2	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
CO3	S (3)	M (2)	M (2)	S (3)	L (1)	S (3)				
CO4	S (3)	M (2)	M (2)	M (2)	S (3)					
W.AV:	3	2.25	2	2.5	2	3	3	3	3	3

Course Outcome Vs Programme Outcome:

*3 – Strong 2 – Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
3	3	3	3	3	3
	S (3) S (3) S (3) S (3) S (3)	S (3) S (3) S (3) S (3)	S (3) S (3) S (3) S (3) S (3) S (3)	S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3)	S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3) S (3)

Semester Four

Credits
20
(SemesterIV:20Credits)

CODE: 501410

Course Objectives

The objectives of this course are to prepare the students to adapt to the research environment and understand how projects are executed in a research laboratory. It will also enable students to learn practical aspects of research and train students in the art of analysis and thesis writing.

Student Learning Outcomes

Students should be able to learn how to select and defend a topic of their research, how to effectively plan, execute, evaluate and discuss their experiments. Students should be able to demonstrate considerable improvement in the following areas:

- In-depth knowledge of the chosen area of research.
- Capabilitytocriticallyandsystematicallyintegrateknowledgetoidentifyissuesthatmustbeaddressedwithin framework of specific thesis.
- Capabilitytocreate, analyse and critically evaluated ifferent technical solutions
- Ability to conduct research independently
- Project management skills
- Problem solving skills
- Competence in research design and planning
- · Communication and inter personal skills

Syllabus Planning &performi ng experiments	Based on the project proposal submitted in earlier semester, students should be able to plan, and engage in, an independent and sustained critical investigation and evaluate a chosenresearchtopicrelevanttobiologicalsciencesandsociety. Theyshouldbeableto systematicallyidentifyrelevanttheoryandconcepts, relate these to appropriate method- ologies and evidence, apply appropriate techniques and draw appropriate conclusions. Senior researchers should be able to train the students such that they can work inde- pendently and are able to understand the aim of each experiment performed by them. They should also be able to understand the possible outcomes of each experiment.
Syllabus Thesis writing	At the end of their project, thesis has to be written giving all the details such as aim, methodology,results,discussionandfutureworkrelatedtotheirproject.Studentsmay aim to gettheir research findingspublished inapeer-reviewed journal.If there search findings have application-oriented outcomes, the students may file patent application.

Recommended Electives

Biological Imaging

Course Objectives

The objectives of this course are to provide complete over view of stateof-art live-cell imaging techniques using microscopes currently available in literature. Livecell imaging techniques allow realtime examination of almost every aspect of cellular function under normal and experimental conditions. With live-cell imaging experiments, main challenges are to keep cells alive and healthy over a period of time. The growing number of live-cell imaging techniques means one can obtain greater amounts of information without stressing out cells.

Student Learning Outcomes

On completion of this course, students shall be able to gain a complete overview of super-resolution field from fundamentals to state-of-art methods and applications in biomedical research. The students shall learn the comparative advantages and disadvantages of each technique, covers all key techniques in field of biomedical science. The students shall also learn how to use new tools to increase resolution in sub-nanometer-scale images of living cells and tissue, which leads to new information about molecules, pathways and dynamics and state-of-theart examples of applications using microscopes.

		ELECTIVE					
DSE	Course code: 501501	BIOLOGICAL IMAGING	Р	Credits: 2	Hours:22		
Pre-requisite	Overview of super-reso	Syllabus R	levised	2022-23			
Unit I							
Objective 1	To provide a com	plete overview of state-	of-art live-c	ell imaging t	echniques		
One of the mos	st basic techniques for liv	One of the most basic techniques for live-cell imaging is widefield fluorescent microscopy. Standard					
inverted research grade microscopes can yield valuable results if you are imaging adherent cells, large							
inverted resear	ch grade microscopes car				•		
			you are ima	ging adherent	t cells, large		
regions of inte	erest (such as organelles	n yield valuable results if	you are ima ctions (less	ging adherent than 5 micr	cells, large rometer). In		

matched interference filters for specific excitation and emission wavelengths of your fluorophore of interest. With widefield microscopy, your specimen is only exposed to excitation light for relatively short time periods as the full aperture of emission light is collected by the objectives. Widefield

fluorescence m	nicroscopy can be used in combination with other common contrast techniq	ues such as					
	and differential interference contract (DIC) microscopy. This combination						
when performing live-cell imaging to examine general cell morphology or viability while also							
-	as of interest within cells.	white diso					
Outcome 1	Overview on fundamentals of microscopy and its biomedical	K1					
Ouicome I	· · · ·	K1					
	applications.						
Unit II							
Objective 2	To teach students the background and experimental methods in handli						
CLSM has abi	lity to eliminate out-of-focus light and information. It is also possible to ob	tain optical					
serial sections	from thicker specimens. A conjugate pinhole in optical path of confocal	microscope					
prevents fluore	escence from outside of focal plane from being collected by photomultiplier	detector or					
imaged by car	mera. In CLSM, a single pinhole (and single focused laser spot) is scan	nned across					
specimen by s	canning system. This spot forms a reflected epi-fluorescence image back	on original					
*	specimen is in focus, fluorescent light from it passes through pinhole to de	•					
	ght is defocused at pinhole and very little of this signal passes through						
meaning that	background fluorescence is greatly reduced. The pinhole acts as a spatia	al filter for					
emission light	from the specimen.						
Outcome 2	Familiarize with basic laboratory instruments and understand the	K2					
	working principle of CLSM						
	Unit III						
Objective 2 To develop skills of the students to perform spinning disc confocal							
Objective 3 microscopy							
	meroscopy						
This method u	itilises a 'Nipkow Disc' which is a mechanical opaque disc which has	a series of					
thousands of d	utilises a 'Nipkow Disc' which is a mechanical opaque disc which has	ole on disc					
thousands of d is imaged by n	utilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh	ole on disc cimen. The					
thousands of d is imaged by n emission from	utilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh nicroscope objective to a diffraction-limited spot on region of interest on spe	ole on disc cimen. The served and					
thousands of d is imaged by n emission from captured by a	atilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh nicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob	nole on disc ecimen. The served and on specimen					
thousands of d is imaged by n emission from captured by a are simultaneous	utilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh nicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o	nole on disc ecimen. The eserved and on specimen me imaging					
thousands of d is imaged by n emission from captured by a are simultaneo (30-frames-per	atilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh nicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o pusly illuminated. Using SDCM to examine a specimen means that real-tir	nole on disc ecimen. The eserved and on specimen me imaging					
thousands of d is imaged by n emission from captured by a are simultaneo (30-frames-per	utilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh nicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o usly illuminated. Using SDCM to examine a specimen means that real-tir r-second or faster) can be achieved, which is extremely useful if you are	nole on disc ecimen. The eserved and on specimen me imaging					
thousands of d is imaged by n emission from captured by a are simultaneo (30-frames-per dynamic chang	atilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh nicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o susly illuminated. Using SDCM to examine a specimen means that real-tire -second or faster) can be achieved, which is extremely useful if you are ges within living cells over a wide spectrum of time-scales.	nole on disc ecimen. The oserved and on specimen me imaging looking at					
thousands of d is imaged by n emission from captured by a are simultaneo (30-frames-per dynamic chang	tillises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh nicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o ously illuminated. Using SDCM to examine a specimen means that real-tir second or faster) can be achieved, which is extremely useful if you are ges within living cells over a wide spectrum of time-scales. <i>Distinguish the analysis of specimens in SDCM</i>	tole on disc ecimen. The served and on specimen me imaging looking at <i>K4</i>					
thousands of d is imaged by n emission from captured by a are simultaneo (30-frames-per dynamic chang <i>Outcome 3</i> Objective 4	tillises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh nicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o pusly illuminated. Using SDCM to examine a specimen means that real-time- second or faster) can be achieved, which is extremely useful if you are ges within living cells over a wide spectrum of time-scales. <i>Distinguish the analysis of specimens in SDCM</i> Unit IV	tole on disc ecimen. The oserved and on specimen me imaging looking at <i>K4</i>					
thousands of d is imaged by n emission from captured by a are simultaneo (30-frames-per dynamic chang <i>Outcome 3</i> Objective 4 This method en	Attilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh hicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o busly illuminated. Using SDCM to examine a specimen means that real-time- second or faster) can be achieved, which is extremely useful if you are ges within living cells over a wide spectrum of time-scales. Distinguish the analysis of specimens in SDCM Unit IV To familiarize the students with light-sheet fluorescence micro	tole on disc ecimen. The served and on specimen ne imaging looking at <i>K4</i> oscopy spheroids in					
thousands of d is imaged by n emission from captured by a are simultaneo (30-frames-per dynamic chang <i>Outcome 3</i> Objective 4 This method en vivo in a gent	tillises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh nicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o pusly illuminated. Using SDCM to examine a specimen means that real-time- second or faster) can be achieved, which is extremely useful if you are ges within living cells over a wide spectrum of time-scales. Distinguish the analysis of specimens in SDCM Unit IV To familiarize the students with light-sheet fluorescence micro mables one to perform live-cell imaging on whole embryos, tissues and cell s	aole on disc point on disc poserved and on specimen me imaging looking at <i>K4</i> Scopy spheroids in ble to track					
thousands of d is imaged by n emission from captured by a are simultaneo (30-frames-per dynamic chang <i>Outcome 3</i> Objective 4 This method en vivo in a gent cell movemen	Attilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh hicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o busly illuminated. Using SDCM to examine a specimen means that real-time- second or faster) can be achieved, which is extremely useful if you are get within living cells over a wide spectrum of time-scales. Distinguish the analysis of specimens in SDCM Unit IV To familiarize the students with light-sheet fluorescence micro mables one to perform live-cell imaging on whole embryos, tissues and cell s e manner with high temporal resolution and in three dimensions. One is all	tole on disc perimen. The served and on specimen me imaging looking at <i>K4</i> Scopy spheroids in ble to track issues on a					
thousands of d is imaged by n emission from captured by a are simultaneo (30-frames-per dynamic chang <i>Outcome 3</i> Objective 4 This method en vivo in a gent cell movemen cellular level.	Attilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh hicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o busly illuminated. Using SDCM to examine a specimen means that real-time- second or faster) can be achieved, which is extremely useful if you are ges within living cells over a wide spectrum of time-scales. Distinguish the analysis of specimens in SDCM Unit IV To familiarize the students with light-sheet fluorescence micro hables one to perform live-cell imaging on whole embryos, tissues and cell s is e manner with high temporal resolution and in three dimensions. One is all t over extended periods of time and follow development of organs and ti	able on disc prime in the prevention of the prev					
thousands of d is imaged by n emission from captured by a are simultaneo (30-frames-per dynamic chang <i>Outcome 3</i> Objective 4 This method en vivo in a genth cell movemen cellular level. microscopy as	Attilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh hicroscope objective to a diffraction-limited spot on region of interest on spe a fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points of busly illuminated. Using SDCM to examine a specimen means that real-time- second or faster) can be achieved, which is extremely useful if you are ges within living cells over a wide spectrum of time-scales. Distinguish the analysis of specimens in SDCM Unit IV To familiarize the students with light-sheet fluorescence micro nables one to perform live-cell imaging on whole embryos, tissues and cell s e manner with high temporal resolution and in three dimensions. One is all t over extended periods of time and follow development of organs and the The next evolution of light-sheet fluorescence microscopy, termed lattice	able on disc becimen. The served and on specimen me imaging looking at <i>K4</i> Scopy spheroids in ble to track issues on a light-sheet r-resolution					
thousands of d is imaged by n emission from captured by a d are simultaneo (30-frames-per dynamic chang <i>Outcome 3</i> Objective 4 This method en vivo in a gentl cell movemen cellular level. microscopy w capabilities.	titilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh nicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o ously illuminated. Using SDCM to examine a specimen means that real-time- second or faster) can be achieved, which is extremely useful if you are ges within living cells over a wide spectrum of time-scales. <i>Distinguish the analysis of specimens in SDCM</i> Unit IV To familiarize the students with light-sheet fluorescence micro nables one to perform live-cell imaging on whole embryos, tissues and cell s to over extended periods of time and follow development of organs and ti The next evolution of light-sheet fluorescence microscopy, termed lattice developed by Eric Betzig (Nobel Prize Laureate 2014 for PALM super will even allow live-cell imaging with super-resolved in vivo cellular 1	able on disc perimen. The served and on specimen me imaging looking at <i>K4</i> Scopy spheroids in ble to track issues on a light-sheet r-resolution localization					
thousands of d is imaged by n emission from captured by a d are simultaneou (30-frames-per dynamic chang <i>Outcome 3</i> Objective 4 This method en vivo in a genti cell movemen cellular level. microscopy as microscopy y	ntilises a 'Nipkow Disc' which is a mechanical opaque disc which has rilled or etched pinholes arranged in a spiral pattern. Each illuminated pinh nicroscope objective to a diffraction-limited spot on region of interest on spe fluorophores passes back though Nipkow disc pinholes and can be ob CCD camera. The effect of spinning disc is that many thousands of points o ously illuminated. Using SDCM to examine a specimen means that real-time -second or faster) can be achieved, which is extremely useful if you are get within living cells over a wide spectrum of time-scales. Distinguish the analysis of specimens in SDCM Unit IV To familiarize the students with light-sheet fluorescence micro nables one to perform live-cell imaging on whole embryos, tissues and cell s e manner with high temporal resolution and in three dimensions. One is all t over extended periods of time and follow development of organs and the The next evolution of light-sheet fluorescence microscopy, termed lattice developed by Eric Betzig (Nobel Prize Laureate 2014 for PALM super	able on disc becimen. The served and in specimen me imaging looking at <i>K4</i> Scopy spheroids in ble to track issues on a light-sheet r-resolution					

	Unit V						
Objective 5	Objective 5 To expose the students to mechanism of super-resolved fluorescence microscopy and its applications						
Super-Resolution in a Standard Microscope: From Fast Fluorescence Imaging to Molecular DiffusionLaws in Live Cells; Photoswitching Fluorophores in Super- Resolution Fluorescence Microscopy;Image Analysis for Single-Molecule Localization Microscopy Deconvolution of Nanoscopic Images;Super-Resolution Fluorescence Microscopy of the Nanoscale Organization in cells; Correlative Live-Cell and Super- Resolution Microscopy and Its Biological Applications; SAX Microscopy and ItsApplication to Imaging of 3D-Cultured Cells; Quantitative Super-Resolution Microscopy for CancerBiology and Medicine.Outcome 5Obtain knowledge in the components of super resolved fluorescence microscopy and its application in 3D cultured and cancer biology.K6							
	Unit VI	no					
Objective 6	To Understand the basics of re-scan confocal microscopy						
	llumination Microscopy; Correlative Nanoscopy: AFM Super- M) ; Stochastic Optical Fluctuation Imaging.	-Resolution					
Outcome 6	Understanding the functioning of different super resolution imaging microscopes, advantages and disadvantages of each techniques.	K2					
	ing/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Ana aluate, K6 -Synthesis / Create	llyze, K5-					
	 Suggested Readings: Rajagopal Vadivambal, Digvir S. Jayas. (2015). Bio-Imaging Principles, Techniques, and Applications. ISBN 9781466593671 - CAT# K20618. Alberto Diaspro, Marc A. M. J. van Zandvoort. (2016). Supe Resolution Imaging in Biomedicine. ISBN 9781482244342 - CAT# K23483. Taatjes, Douglas, Roth, Jürgen (Eds.). (2012). Cell Imaging T Methods and Protocols. ISBN 978-1-62703-056-4. Online Resources: World Wide Web Service and Open AI 	r-					

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	L(1)	L(1)	S (3)	M (2)	S (3)					
CO 2	L(1)	L(1)	S (3)	M (2)	S (3)					
CO 3	L(1)	L (1)	S (3)	M (2)	S (3)					
CO 4	L(1)	L(1)	S (3)	M (2)	S (3)					
CO 5	L(1)	L(1)	S (3)	M (2)	S (3)					
W.AV:	1	1	3	2	3	3	3	2	3	3

*3 – Strong 2 – Medium 1 – Low

CO	POS1	POS2	POS3	POS4	POS5	POS6
CO 1	S (3)					
CO 2	S (3)					
CO 3	S (3)					
CO 4	S (3)					
CO 5	S (3)					
W.AV:	3	3	3	3	3	3

Course Outcome Vs Programme Specific Outcome:

^{*3 –} Strong 2 – Medium 1 – Low

Computational Biology

Course Objectives

The objective of this course is to provide students with theory and practical experience of essential stoaid for genomic, proteomic and metabolomics courses and drug design program.

Student Learning Outcomes On

completionofthiscourse,the students are expected to:

- Develop an understanding of the basictheoryofthesecomputational tools;
- Develop requireddatabaseextraction, integration,codingforcomputational tools and methods necessary for All Omics;
- Create hypothesis for investigating specific contemporary biological questions,providehelptoexperiment with or develop appropriate tools;
- Criticallyanalyzeandinterpretresults of their study with respect to whole systems.

		ELECTIVE									
Core	Course code: 501502	Computational Biology	Т & Р	Credits: 4	ours:36						
Pre-requisite			Syllabus F	Revised	2022-23						
	Unit I										
Objective 1	To enable student	s gain a undergraduate level kno	owledge ofb	oioinformatics	with						
Objective I	specific emphasis	on different databases and its a	pplications.								
-		icine; Overview of biological			· ·						
· *	• • • •	functional, composite, structura			· •						
	orage, Access data	abases, Extract and create sub	o databases	, limitations	of existing						
databases.											
Outcome 1	Gain fundamenta	knowledge on databases and th	heir applica	tions	K1						
		Unit II									
Objective 2	To provide co	mprehensive insights on algorit	hm progran	nming and fun	ctioning						
plots. Dynamie Algorithm, Hi	c programming ap idden Markov M	ent, Scoring matrices - PAM, proach: Needleman and Wunse odel: Viterbi Algorithm. Heu unctional identification.	ch Algorith	m, Smith and	Waterman						
Outcome 2		tions of algorithm in local and § ptions available in NCBI platfor		ment and	K3						
		Unit III									
Objective 3	To understand the their applications	e various sequencing platforms,	post sequer	icing analytica	al tools and						
Polymorphism	s in DNA sequence	e, Introduction to Next Generat	ion Sequen	cing technolog	gies, Whole						
	•	ges, Sequencing and analysis			-						
	-	tive genomics, Probabilistic		-							
		crop improvement. Study av									
		tabases; Visualization tools incl	uding Arter	nis and Vista	for genome						
· ·	unctional genomics		1.	1 • 1• 1	V2						
Outcome 3	Acquire knowledg	cquire knowledge on various sequencing platforms and to derive valid K2									

	conclusion from existing datasets								
	Unit IV								
		• 1							
Objective 4	structure and evaluate their interactions								
Retrieving an	d drawing structures, Macromolecule viewing platforms, Structure vali	dation and							
correction, Str	ucture optimization, Analysis of ligand-protein interactions; Tools such as	s PyMol or							
VMD.									
Outcome 4	Execute protein preparation, structure validation using Ramachandran plot, SAVES server and draw ligands for docking	<i>K4</i>							
	Unit V								
Objective 5	Model, analyze and validate protein structure using various online and of	fline tools							
Significance a	nd need, force field methods, energy, buried and exposed residues; side	chains and							
neighbours; fix	ked regions; hydrogen bonds; mapping properties onto surfaces; RMS fit of	conformers							
and protein ch	ains, assigning secondary structures; sequencealignment: methods, evaluation	on, scoring;							
protein curation	on: backbone construction and side chain addition; different types of pro-	otein chain							
-	initio, homology, hybrid, loop; Template recognition and alignments;	-							
*	d considerations; Model analysis and validation; Model optimization; S								
-	, annealing, protein folding and model generation; loop generating met	_							
analysis; Analy	ysis of active sites using different methods in studying protein-protein intera	ctions.							
Outcome 5	Understanding modelling parameters to generate model of proteins and	K4							
o meome o	identify active sites of proteins responsible for its activity	11,							
	Unit VI								
Objective 6	Implement molecular docking for drug discovery								
protein prepar Analysis of c	cking: Types and principles, Semi-flexible docking, Flexible docking; I ration, Macromolecule and ligand optimization, Ligand conformations, locking results and validation with known information. Extra- precision e of Small-molecule libraries, Natural compound libraries for virtual high	Clustering, on docking							
Outcome 6	Help explore different docking methods that will aid in drug discovery	K5							
	Unit VII								
Objective 7	Aid in quantitatively predict both thermodynamic- and kinetic-based								
5	binding parameters of small molecules								
Quantitative s	tructure activity relationships; Introduction to chemical descriptors like2	D, 3D and							
Group-based;	Radar plots and contribution plots and Activity predictions, Pharmacophore	e modeling,							
Pharmacophor	e-based screenings of compound library, analysis and experimental validatio	n.							
	Familarize with quantitative structure-activity relationship methods that								
Outcome 7	are important for prediction of biological effect of chemical compounds	K6							
	based on mathematical and statistical relations.								
	ring/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Ana aluate, K6 -Synthesis / Create	lyze, K5-							
Evaluation/Eva									
	 Suggested Readings: Mount, D. W. (2001). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Bourne, P. E., &Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss. 								

 Lesk, A. M. (2004). Introduction to Protein Science: Architecture, Evention and Commiss. Oxford: Oxford University Press.
Function and Genomics. Oxford: Oxford University Press.
• Campbell, M & Heyer, L. J. (2006), Discovering Genomics, Proteomics
and
Bioinformatics, Pearson Education.
• Oprea, T. (2005). Chemoinformatics in Drug Discovery, Volume 23.
Wiley Online Library.
• 6. Gasteiger, J. & Engel, T. (2003), Chemoinformatics: a Textbook,
Wiley Online Library.
Online Resources:
World Wide Web Service and Open AI

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	M (2)	S (3)	L(1)	S (3)	S (3)	S (3)	S (3)	M (2)	S (3)
CO2	L (1)	L (1)	S (3)	L (1)	S (3)	S (3)	S (3)	M (2)	M (2)	S (3)
CO3	S (3)	S (3)	M (2)	S (3)	M (2)	S (3)				
CO4	S (3)									
CO5	S (3)									
CO6	S (3)									
CO7	S (3)									
W.AV:	2.7	2.57	2.85	2.42	3	3	3	2.85	2.57	3

*3 – Strong 2 – Medium 1 – Low

Course Outcomes Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)					
CO2	S (3)					
CO3	S (3)					
CO4	S (3)					
CO5	S (3)					
W.AV:	3	3	3	3	3	3

CourseObjectives

Drug Discovery and Development

Credits

Thiscoursewillgiveabroadoverviewof researchanddevelopmentcarriedoutin industrialsetuptowardsdrugdiscovery.

StudentLearningOutcomes

On completion of this course, students should be able to understand basics of R&Dindrugdiscoveryandshouldbeable to apply knowledge gained in respective fields of pharmaceutical industry.

		ELECTIVE			
Core	Course code: 501503	Drug Discovery and Development T Credits: 2		Hours:29	
Pre-requisite	Knowledge in Biochem Basics of Human Anato	•	Syllabus F	Revised	2022-23
		Unit I			
Objective 1		entify target or drug profi chensive understanding a	•		-
throughput scr of bioinformat based on unde receptors; Mo molecular dyna folding, structu silico screenin	cluding combinations o eening (HTS); Conceptua ics and data processing in rstanding the three-dimer delling drug/ receptor in amics simulations and how ural bioinformatics, recep- ing of libraries, semi-em- gn of combinatorial libr	alizing the automation of n the identification of lean asionalstructures and physic interactions with the en- mology modelling; Confe- ptor-based and ligand-ba- apirical and ab-initio m	theHTS pr d compoun sicochemica nphasis on prmational s sed design ethods, QS	ocess and the ds; Rational c al properties o molecular n ampling, mac and docking AR methods	importance lrug design, f drugs and nechanisms, romolecular methods, in , molecular
Outcome 1	Comprehensive understa various diseases	anding of lead compound	identificatio	on for	К2
		Unit II			
Objective 2	• •	nsive understanding of mondational mondations and states and state			cture-
biological acti potency and t activity relation compound are effects, ionizat	of relevant groups on a r vity; Understanding struc- herapeutic index; Concep- onship models (QSAR m a function of its physicoc- ion, stereochemistry, etc C/MS/MS, GC/MS and F Understanding of critica	cture activity relationship pt of quantitative drug of odels) based on the fac hemical parameters such ; Bioanalytical assay devo	b; Structure design usin t that the b as solubilit elopment in	modification g Quantitative piological prop y, lipophilicity support of in	to increase e structure- perties of a y, electronic
	C	evelop robust bioanalytic	2	e	K4

	Unit III									
Objective 3	To develop a comprehensive understanding of essential co	ncepts in								
, , , , , , , , , , , , , , , , , , ,	armacokinetics, pharmacodynamics, toxicology, and regulatory compliance,									
	enabling proficient design and execution of preclinical and clinical studi	es for drug								
	development.									
Principles of a	drug absorption, drug metabolism and distribution - intestinal absorption,	, metabolic								
stability, drug-	drug interactions, plasma protein binding assays, metabolite profile studies	, Principles								
of toxicology,	Experimental design for preclinical and clinical PK/PD/TK studies, Selectio	n of animal								
	tory guidelines for preclinical PK/ PD/TK studies; Scope of GLP, SOP for									
	n clinical testing, control on animal house, report preparation and doc	umentation								
Integration of r	non-clinical and preclinical data to aid design of clinical studies.									
Outcome 3	Acquire knowledge in key concepts in pharmacokinetics,	K2								
	pharmacodynamics, and toxicology.	Π2								
	Unit IV									
Objective 4	To provide students with a comprehensive understanding of Good Manufac	turing								
	Practices (GMP) principles and implementation, encompassing documentat	ion,								
	quality control, quality assurance, regulatory compliance									
Requirements	of GMP implementation, Documentation of GMP practices, CoA,	Regulatory								
certification of	GMP, Quality control and Quality assurance, concept and philosophy of	TQM, ICH								
and ISO 9000); ICH guidelines for Manufacturing, Understanding Impurity Qualifica	ation Data,								
Stability Studie	28.									
Outcome 4	Students will proficiently grasp GMP implementation, adeptly document									
	GMP practices, analyze CoA, navigate regulatory GMP certification, excel									
	in Quality Control and Assurance, comprehend TQM concepts, evaluate	K1								
	ICH and ISO 9000 principles, interpret ICH guidelines for Manufacturing,	Π1								
	expertly assess Impurity Qualification Data, and demonstrate competence in									
	designing Stability Studies.									
	Unit V									
Objective 5	To provide fundamental principles and practical applications of Phase I-IV									
	study design andAddress clinical safety through an in-depth exploration of	adverse								
	events and drug reactions.									
Objectives of	Phase I, II, III and IV clinical studies, Clinical study design, enrollment	t, sites and								
documentation	, Clinical safety studies: Adverse events and adverse drug reactions, C	linical PK,								
pharmacology,	drug-drug interaction studies, Statistical analysis and documentation.									
Outcome 5	Understand the objectives and designs of Phase I-IV trials. Grasp safety									
	assessment through adverse events and drug reactions and dive into									
	clinical PK, pharmacology, and drug interactions. Develop proficiency in	<i>K4</i>								
	statistical analysis and meticulous documentation for robust clinical study									
	execution.									

	Unit VI						
Objective6	Understanding of Global Regulatory Affairs and addressing ethical considerations vithin current guidelines, including Ethical Committee setup and Animal Ethical ssues.						
FDA guideline oncology, HIV GCP Complian	tory Affairs and different steps involved, Regulatory Objectives, Regulatory A es on IND and NDA submissions, Studies required for IND and NDA submiss 7, cardiovascular indications, On-label vs. off-label drug use GCP and Requirer nce, Ethical issues and Complianceto current ethical guidelines, Ethical Commit nimal Ethical issues and compliance.	sions for ments of					
Outcome 6 Gained knowledge on Global Regulatory Affairs, FDA guidelines for IND and NDA submissions, required studies for oncology, HIV, and cardiovascular indications, on-label vs. off-label drug use, GCP compliance, ethical considerations, Ethical Committee setup, and Animal Ethics compliance.							
	ring/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Analyz aluate, K6 -Synthesis / Create	æ, K5-					
	 Suggested Readings: Atkinson AJ Jr, Daniels CE, Dedrick RL. Principles of Drug A The Basis of Pharmacology. John Wiley & Sons; 2012. Hill RG. Drug Discovery and Development: Technology in Transition. Academic Press; 2013. Stevens EDC, Matthews K. Medicinal Chemistry: The Moder Discovery Process. Pearson; 2013. Cairns D. Pharmaceutical Chemistry. Churchill Livingstone; 2 Embrechts MJ, Chong S. Drug Discovery: A Casebook and Au CRC Press; 2016. Online Resources: World Wide Web Service and Open AI 	•n Drug 2006.					

Course Outcome	Vs Programme	Outcome:
-----------------------	--------------	-----------------

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	S (3)	M (2)	S (3)	S (3)	M (2)	S (3)	S (3)	S (3)	S (3)
CO2	S (3)	S (3)	M (2)	S (3)						
CO3	S (3)	M (2)	S (3)	M (2)	S (3)	S (3)	S (3)	S (3)	M (2)	S (3)
CO4	S (3)	S (3)	M (2)	S (3)						
CO5	S (3)	L (1)	M (2)	M (2)	S (3)					
W.AV:	3	2.4	2.2	2.6	3	2.8	3	3	2.8	3

^{*3 –} Strong 2 – Medium 1 – Low

B) S (3) S (3) B) S (3) S (3)
S(3) = S(3) = S(3)
3) S (3) S (3)
3) S (3) S (3)
3) S (3) S (3)
3 3
3

Course Outcome Vs Programme Specific Outcome:

Environmental Biotechnology

CourseObjectives

This course aims to introduce fundamentals of Environmental Biotechnology.Thecoursewillintroduce major groups of microorganismstools in biotechnology and their most important environmental applications. The environmental applications of biotechnologywillbepresented indetail and will be supported by examples from the national and international literature.

StudentLearningOutcomes

On completion of course, students willbeabletounderstanduseofbasic microbiological,molecularandanalytical methods, which are extensively used in environmental biotechnology.

		ELECTIVE				
Core	Course code: 501504	Environmental Biotechnology	Р	Credits: 4	Hou	
Pre-requisite	Basic Knowledge about the fundamentals of Environmental BiotechnologySyllabus Revised2022-					
		Unit I				
Objective 1	*	owledge about the polluti eliminate the pollution us			d the	
domestic, inc conservation;	lustrial, solid and haza Role of microorganisms i	n and its control; pollur ardous wastes; strain i n geochemical cycles; mir nostat theory, relevant n	mprovemer crobial ener	nt; Biodiversi gy metabolisr	ity and n, micr	
Outcome 1	<i>Ability to know about th prevent it</i>	e environmental threats a	und the strai	tegies to	K	
		Unit II				
Objective 2	To make the students us Bioremediation.	nderstand the fundamenta	ls of microl	bes involved in	n	
bioaugmentati organic pollut situ, ex situ).	on) – examples, biorem ants (PAHs, PCBs, Pesti	ethods and strategies ediation of metals (Cr, , cides, TNT etc.), technol	As, Se, Hg logical aspe), radionuclic ects of biorem	les (U, nediatio	
bioaugmentati organic pollut	on) – examples, biorem ants (PAHs, PCBs, Pesti	ediation of metals (Cr, 2 cides, TNT etc.), technol pout the importance of mic onmental threats.	As, Se, Hg logical aspe), radionuclic ects of biorem	les (U, nediatio	
bioaugmentati organic pollut situ, ex situ). <i>Outcome 2</i>	on) – examples, biorem ants (PAHs, PCBs, Pesti Gains the knowledge ab accordance to the envir	ediation of metals (Cr, L cides, TNT etc.), technol pout the importance of mic onmental threats. Unit III	As, Se, Hg logical aspe), radionuclic ects of biorem lvement in	les (U, nediatio K	
bioaugmentati organic pollut situ, ex situ).	on) – examples, biorem ants (PAHs, PCBs, Pesti Gains the knowledge ab accordance to the envir	ediation of metals (Cr, 2 cides, TNT etc.), technol pout the importance of mic onmental threats.	As, Se, Hg logical aspe), radionuclic ects of biorem lvement in	les (U, nediatio <i>K</i>	
bioaugmentati organic pollut situ, ex situ). <i>Outcome 2</i> Objective 3 Application of bacteria: exam description of phyto stabiliza	on) – examples, biorem ants (PAHs, PCBs, Pesti <i>Gains the knowledge ab</i> <i>accordance to the envir</i> To develop the kno bioremediation f bacteria and fungi in nples, uses and advantag major methods of applica ttion).	ediation of metals (Cr, A cides, TNT etc.), technol cout the importance of mic conmental threats. Unit III owledge about the ap bioremediation: White ges vs disadvantages; Ph ation (phyto accumulation	As, Se, Hg logical aspe crobial invo pplications rot fungi nyto remedi n, phyto vol), radionuclic ects of biorem <i>lvement in</i> of microor vs specialized ation: Fundar atilization, rhi	les (U, nediatio K ganism d degra mentals izo filtr	
bioaugmentati organic pollut situ, ex situ). <i>Outcome 2</i> Objective 3 Application of bacteria: exam description of	on) – examples, biorem ants (PAHs, PCBs, Pesti <i>Gains the knowledge ab</i> <i>accordance to the envir</i> To develop the kno bioremediation f bacteria and fungi in nples, uses and advantag major methods of applica ttion).	ediation of metals (Cr, A cides, TNT etc.), technol cout the importance of mic conmental threats. Unit III owledge about the ap bioremediation: White ges vs disadvantages; Ph ation (phyto accumulation ethods involved and the ap	As, Se, Hg logical aspe crobial invo pplications rot fungi nyto remedi n, phyto vol), radionuclic ects of biorem <i>lvement in</i> of microor vs specialized ation: Fundar atilization, rhi	les (U, nediatio K ganism d degra mentals izo filtr	
bioaugmentati organic pollut situ, ex situ). <i>Outcome 2</i> Objective 3 Application of bacteria: exan description of phyto stabiliza <i>Outcome 3</i>	 on) – examples, bioremants (PAHs, PCBs, Pesting) <i>Gains the knowledge ab accordance to the environance to the environance to the environance to the environance</i> To develop the knowledge about the knowledge about the management of a policies <i>Knowledge about the management</i> 	ediation of metals (Cr, A cides, TNT etc.), technol pout the importance of mic onmental threats. Unit III owledge about the ap bioremediation: White ges vs disadvantages; Ph ation (phyto accumulation ethods involved and the ap Unit IV	As, Se, Hg logical aspe crobial invo pplications rot fungi tyto remedi a, phyto vol pplications), radionuclic ects of biorem <i>lvement in</i> of microor vs specialized ation: Fundar atilization, rhi of	les (U, nediatio K ganism d degra mentals izo filtr K	
bioaugmentati organic pollut situ, ex situ). <i>Outcome 2</i> Objective 3 Application of bacteria: exam description of phyto stabiliza	 on) – examples, bioremants (PAHs, PCBs, Pesting) <i>Gains the knowledge ab accordance to the environance to the environance to the environance to the environance</i> To develop the knowledge about the knowledge about the management of a policies <i>Knowledge about the management</i> 	ediation of metals (Cr, A cides, TNT etc.), technol cout the importance of mic conmental threats. Unit III owledge about the ap bioremediation: White ges vs disadvantages; Ph ation (phyto accumulation ethods involved and the ap	As, Se, Hg logical aspe crobial invo pplications rot fungi tyto remedi a, phyto vol pplications), radionuclic ects of biorem <i>lvement in</i> of microor vs specialized ation: Fundar atilization, rhi of	ganisma d degra mentals izo filtr	
bioaugmentati organic pollut situ, ex situ). <i>Outcome 2</i> Objective 3 Application of bacteria: exan description of phyto stabiliza <i>Outcome 3</i> Objective 4 Bioinsecticide safety in their Pseudomonas systems betwo Plant growth p	 on) – examples, bioremants (PAHs, PCBs, Pesting Gains the knowledge about the environmediation of bacteria and fungi in the sector and fungi is the sector and function is the sector and function and function are set of the sector and function and function are set of the sector and function are set of the set of the	ediation of metals (Cr, A cides, TNT etc.), technol cout the importance of mic conmental threats. Unit III owledge about the ap bioremediation: White ges vs disadvantages; Ph ation (phyto accumulation ethods involved and the ap Unit IV canism and the mode of ac , Baculoviruses, uses, geription of mode of actions	As, Se, Hg logical aspe crobial invo oplications rot fungi hyto remedi h, phyto vol pplications ction of bioi enetic mod s and mecha biosis, myc), radionuclic ects of biorem <i>lvement in</i> of microor vs specialized ation: Fundar atilization, rhi of nsecticides wi ifications and anisms (e.g. T corrhiza fungi roblems in ap	les (U, nediation ganism d degra mentals zo filtr k ith its s l aspect richode symbi	

					Unit V					
Objective 5										
	the f	undamen	tal know	ledge abo	out eco-f	riendly ir	ndustrial	products	•	
Environmental Biotechnology and biofuels: biogas; bioethanol; biodiesel; biohydrogen; Description of the industrial processes involved, microorganisms and biotechnological interventions for optimization of production; Microbiologically enhanced oil recovery (MEOR); Bioleaching of metals Production of bioplastics; Production of biosurfactants: bioemulsifiers; Paper production: use of xylanases and white rot fungi.										
Outcome 5		-	duction, ch is mos					friendly		K3
K1-Remember	ering/ K	Inowledg	ge, K2- Ui	nderstand	ding, K3 -	-Applica	nt/Apply	K4-Ana	lysis/Ana	ılyze, K5-
Evaluation/Ev	valuate,	K6-Syn	thesis / C	reate						
		•	Theory a B. Ritma Principle Scragg A Limited. J. S. Dev for Air F H. J. Rel Compret 6. H. S. Environt Resource World V	and Appl. ann and I e & Appl A., (2005 vinny, M Pollution hm and C hensive 7 Peavy, I mental E ces: Vide Wel	ications, P. L. Mc lications,) Envirol Control, G. Reed, Treatise, D. R. Rov Ingineerin	Wiley Pr Carty, (20 2nd Ed., <i>nmental I</i> nusses an CRC Pro (2001), <i>E</i> (2001), <i>E</i> Vol. 11, 1 we and G <i>ng</i> , McGr	ublishers 200), <i>En</i> v McGrav <i>Biotechno</i> d T. S. V ess. <i>Biotechno</i> 2nd Ed., Tchoba raw-Hill	vironmen v Hill Sc ology. Pe Vebster, (Nebster, (Ne	ience. earson Ed (1998), <i>B</i> <i>Multi-vo</i> blishers I	chnology: lucation liofiltration
	001	DOT		e Outco	me Vs P	rogramn PO6	ne Outco PO7		DO0	PO10
	PO1	PO2	PO3		-	-		PO8	PO9	PO10
	M (2)	S (3)	S (3)	S (3)	M (2)	S (3)	S (3)	S (3)	S (3)	S (3)
CO2 I	L (1)	L (1)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)

W.AV:	1.6	2.2	3	3	2.4	3	3	3	3	3
CO5	L (1)	L (1)	S (3)							
CO4	S (3)	S (3)	S (3)	S (3)	M (2)	S (3)				
CO3	L (1)	S (3)	S (3)	S (3)	M (2)	S (3)				
002	= (1)	2(1)	2 (0)	2 (0)	2 (0)	2 (0)	2 (0)	2 (0)	2 (0)	2 (0)

*3 – Strong 2 – Medium 1 – Low

Course Outcome Vs Programme Specific Outcome:

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO2	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO3	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO4	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
CO5	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)
W.AV:	3	3	3	3	3	3
	•	*3 - Stro	ng 2 – Med	$\lim_{t \to 0} 1 - L_{t}$)W	

⁴3 – Strong 2 – Medium 1 – Low

Microbial Technology

CourseObjectives

The objectives of this course are to introduce students to developments/ advances made in field of microbial technologyforuseinhumanwelfareand solving problems of the society.

StudentLearningOutcomes

Oncompletionofthiscourse, students would develop deeper understanding of the microbial technology and its applications.

		ELECTIVE							
Core	Course code: 501505	Microbial Technology	Т	Credits: 2	Hours:				
Pre-requisite			Syllabus H	Revised	2022-23				
	Unit I								
Objective 1	This is a foundational course that aims to provide students with a comprehensive understanding of the basic principles and applications of microbial technology.								
Introduction t	o microbial technolog	y: Microbial technolog	y in huma	n welfare; Is	olation and				
Advanced gen TALEs/TALEN factors for epige	ome and epigenome ls, and the CRISPR/Ca enome editing, and other cations; Strain improven els.	industry – advances in editing tools (e.g., as9 system as nucleases r emerging tools) for mar nent to increase yield of	engineered for genor lipulation o selected mo	zinc finger me editing, tu f useful micro olecules, e.g.,	r proteins, ranscription bbes/ strains				
Outcome 1	microbiology, includi used in the field. applications of micro real-world problems evaluate the potential	idents in acquiring a ng the fundamental con This also helps to und bial technology and its while developing the a benefits and risks asso rious technological applic	cepts and the derstand the significance ability to a ciated with	terminology ne practical e in solving analyse and	К2				
		Unit II							
Objective 2	understanding how environmental challen ecosystems, nutrient	mental applications of m microorganisms can b ges. It also gives insights cycling, their impact o g a sustainable environme	be harness s into the ro n the envi	ed to addre bles of microo	ss various rganisms in				
Environmental	l applications of microl	bial technology: Enviror	mental app	olication of mi	crobes; Ore				
Environmental applications of microbial technology: Environmental application of microbes; Ore leaching; Biodegradation - biomass recycle and removal; Bioremediation - toxic waste removal and soil remediation; Global Biogeochemical cycles; Environment sensing (sensor organisms/ biological sensors); International and National guidelines regarding use of genetically modified organisms in environment, food and pharmaceuticals.									
Outcome2	technology in mitiga assists in gaining kno	s an advantage in d ronmental issues and the ting environmental deg owledge of practical mic nallenges, which can be	potential o radation pr robial-base	f microbial roblems. It d solutions	К2				

	agriculture, and conservation efforts.			
	Unit III			
Objective 3	By learning pharmaceutical applications of microbial technology, individuals to engage in the dynamic field of pharmaceuticals, wher contribute to the development of new drugs, innovative treatment methor advancement of medical science, all while considering the potential b ethical considerations associated with the applications.	they can ods, and the		
Pharmaceutic	al applications of microbial technology: Recombinant protein and pharm	maceuticals		
production in a ethical); Attrib cloning and ea desirable prop	microbes – common bottlenecks and issues (technical/operational, commutes required in industrial microbes (Streptomyces sp., Yeast) to be used appression hosts (biologicals production); Generating diversity and intro- perties in industrially important microbes (Streptomyces/Yeast); Mic nstream processing approaches used in industrial production process (Streptomyces (Streptomyces))	nercial and as efficient oduction of robial cell		
Outcome3	Upon completing the study of pharmaceutical applications of microbial technology, students will gain a comprehensive understanding of the intersection between microbiology and pharmaceutical science by understanding how microorganisms can be used in the synthesis of essential drugs, leading to more efficient and cost-effective pharmaceutical production. This study also gives a prospect for innovative techniques for targeted drug delivery, utilizing microbial systems to enhance the efficacy and specificity of pharmaceutical compounds.	K3		
	Unit IV			
Objective 4	In brief, studying food applications of microbial technology equips indiv the knowledge and tools to contribute to the development of safe, high- innovative food products while promoting sustainable practices and important issues related to food production and safety.	quality, and		
Food applications of microbial technology: Application of microbes and microbial processes in food and healthcare industries - food processing and food preservation, antibiotics and enzymes production, microbes in targeted delivery application – drugs and vaccines (bacterial and viral vectors); Non- recombinant ways of introducing desirable properties in Generally recognized as safe (GRAS) microbes to be used in food (e.g., Yeast) - exploiting the existing natural diversity or the artificially introduced diversity through conventional acceptable techniques (mutagenesis, protoplast fusion, breeding, genome shuffling, directed evolution etc.).				
Outcome4	This unit prepares the students to contribute to the development of new and innovative food products, such as probiotics, fortified foods, and plant-based alternatives, using microbial processes. It facilitates the knowledge and skills needed to identify, prevent, and control food-borne pathogens, ensuring that food products meet high safety standards and supporting environmentally friendly practices.	K6		

	Unit V
Objective 5	Studying advances in microbial technology advocates for us to be at the forefront of innovation, making meaningful contributions to the microbial technology field, improving existing practices, and leading the way in the application of microorganisms to solve pressing challenges.
Advances in n	nicrobial technology- Microbial genomics for discovery of novel enzymes, drugs/
	nits of microbial genomics with respect to use in human welfare; Metagenomics and
	mics – their potential, methods to study and applications/use (animal and plant
health, environ	imental clean-up, global nutrient cycles & global sustainability, understanding obal metagenomics initiative - surveys/projects and outcome, metagenomic library
construction a	and functional screening in suitable hosts – tools and techniques for ification of novel enzymes, drugs (e.g., protease, antibiotic) etc.
aiseevery/lacin	By course completion, students will have developed the skills to
Outcome	design and conduct advanced research projects in microbiology, contributing to the field's knowledge base. And they will also gain
5	knowledge about the development of new technologies, products, and K5
J	processes that utilise microorganisms in various industries, such as
	biotechnology, healthcare, and environmental management.
K1 Rememberir	ng/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Analyze, K5 -
Evaluation/Evalu	uate, K6-Synthesis / Create
	Suggested Readings:
	• Lee, Y. K. (2013). Microbial Biotechnology: Principles and
	Applications. Hackensack, NJ: World Scientific.
	 Moo-Young, M. (2011). Comprehensive Biotechnology. Amsterdam: Elsevier.
	• Nelson, K. E. (2015). Encyclopedia of Metagenomics. Genes,
	Genomes and Metagenomes: Basics, Methods, Databases and Tools. Boston, MA: Springer US.
	 The New Science of Metagenomics Revealing the Secrets of Our Microbial Planet. (2007). Washington, D.C.: National Academies Press.
	 Journals: (a) Nature, (b) Nature Biotechnology, (c) Applied microbiology and biotechnology, (d) Trends in Biotechnology, (e) Trends in Microbiology, (f) Current opinion in Microbiology, (g) Biotechnology Advances,
	• (h) Genome Research)
	Online Resources:
	World Wide Web Service and Open AI
	Websites: http://jgi.doe.gov/our-science/

	Course Outcome VS Program me Outcomes									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M (2)	S (3)	M (2)	L (1)	M (2)	M (2)	M (2)	L (1)	L (1)	L (1)
CO2	L (1)	L (1)	M (2)	S (3)	M (2)	L (1)	M (2)	L (1)	M (2)	M (2)
CO3	L (1)	L (1)	M (2)	L (1)	M (2)	L (1)	M (2)	L (1)	S (3)	L (1)
CO4	L (1)	L (1)	M (2)	L (1)	L (1)	M (2)	S (3)	L (1)	L (1)	L (1)
CO5	M (2)	M (2)	L (1)	M (2)	M (2)	M (2)	M (2)	L (1)	L (1)	S (3)
W.AV	1.2	1.6	1.8	1.6	1.8	1.6	2.2	1	1.6	1.6

Course Outcome VS Program me Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S (3)	L (1)	L (1)	M (2)	M (2)
CO2	M (2)	L (1)	L (1)	L (1)	M (2)
CO3	M (2)	M (2)	S (3)	S (3)	M (2)
CO4	M (2)	L (1)	M (2)	L (1)	L (1)
CO5	L (1)	L (1)	L (1)	M (2)	M (2)
W.AV	2	1.2	1.6	1.8	1.8

S –Strong (3), M-Medium (2), L- Low (1)

 Course Objectives The aim of this course is to introduce methods and strategies commonly used in protein engineering. Credits Credits Image: Structure and construction proteins by computer-based method classification of proteins; Analyse purity and stability of proteins and explain how to store them in best way; Explain how proteins can be used for different industrial and acader purposes such as structure determination, organic synthesis drug design. 			truction of methods; of o store e used academic		
		ELECTIVE			
Core	Course code: 501506	PROTEIN ENGINEERING	Т	Credits: 2	Hours:
Pre-requisite	Basic Knowled	ge in Protein engineering	Syllabus F	Revised	2022-23
		Unit I			
Objective 1	To understand engineering.	the basic methods and stra	tegies com	monly used	in protein
Stability to cl	hanges in paran <i>tc.</i> Protein engine Examine the fu	chods of study) – affinity and s neters as pH, temperature and ering with unnatural amino acids ndamental attributes of protein realm of protein engineering.	amino aci and its app	d sequence, lications.	
		Unit II			• 0•
Objective 2	To provide tec of proteins.	hnical knowledge of protein st	ability, stri	ucture and cla	assification
properties of properties-vise	roteins: far-UV ar cosity, hydrogen-o arameters that car	of a protein; Spectroscopic metho nd near-UV CD; Fluorescence; U deuterium exchange; Brief introd be measured/obtained from NM understand the biochemical	V absorban uction to NI R and their	ce; ORD; Hyd MR spectrosco interpretation.	rodynamic py –
	structure	Unit III			
Objective 3	protein engine	l the significance of advance ering applications	-		-
weakly polar methods of pr shuffling; Gu methodologies bacteriorhodop	interactions, hyd otein engineering ided protein re like GigaMetrix, osin as an example	ng proteins – Van der waals, o rophobic effects; Entropy – er g: directed evolution like gene combination, <i>etc.</i> , Optimizatio High throughput microplate scro e; Engineering antibody affinity b d its use in drug discovery.	nthalpy con site saturati n and hig eens <i>etc</i> ., A	npensation; Exion mutagenes th throughput pplication to d	xperimental sis; Module screening levices with

Outcome 3	Students will aquire knowledge in the experimental analysis of	K3								
	proteins and their applications in drug discovery.									
	Unit IV									
Objective 4	To aquire knowledge in basic structure, function and mechanism of pro	otein using								
	computational applications.									
-	al approaches: Protein engineering: sequence and 3D structure analysis, Da	•								
	n map, Mechanism of stabilization of proteins from psychrophiles and thermo-									
<i>a-vis</i> those fr potential.	om mesophiles; Protein design, Directed evolution for protein engineeri	ng and its								
•	Students learn to apply protein structure bioinformatics techniques.	K5								
Ouicome 4	Unit V	КJ								
Objective 5		J4								
Objective 5	To understand the practical knowledge of commercial protein engineered to enhance its application-relevant functionality	product								
Case studies.	engineered to enhance its appreation-relevant functionanty									
Case studies.	Students will able to understand the theoretical concepts are									
Outcome 5	Students will able to understand the theoretical concepts are underpinned by practical example.	<i>K6</i>								
	ring/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Anal	lyze, K5-								
Evaluation/Eva	aluate, K6 -Synthesis / Create									
	Suggested Readings:									
	 Edited by T E Creighton, (1997), Protein Structure: a Practic 	pal								
	Approach, 2nd Edition, Oxford university press.	ui								
	 Cleland and Craik, (2006), Protein Engineering, Principles and 	nd								
	Practice, Vol 7, Springer Netherlands.									
	• Mueller and Arndt, Protein Engineering Protocols, 1st Editio	n,								
	Humana Press.									
 Ed. Robertson DE, Noel JP, (2004), Protein Engineering Methods in Enzymology, 388, Elsevier Academic Press. 										
	• 5. J Kyte; (2006), <i>Structure in Protein Chemistry</i> , 2nd Edition, Garland publishers.									
	Online Resources:									
	World Wide Web Service and Open AI									
	1									

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S (3)	L (1)	M (2)	M (2)	S (3)	S (3)	L (1)	S (3)	S (3)	S (3)
CO2	M (2)	S (3)	M (2)	S (3)	L (1)	S (3)				
CO3	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
CO4	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
CO5	S (3)	M (2)	M (2)	S (3)	M (2)	S (3)				
W.AV:	2.8	2	2	2.8	2	3	2.6	3	3	3

^{*3 –} Strong 2 – Medium 1 – Low

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)					
CO2	S (3)					
CO3	S (3)					
CO4	S (3)					
CO5	S (3)					
W.AV:	3	3	3	3	3	3

Course Outcome Vs Programme Specific Outcome:

*3 – Strong 2 – Medium 1 – Low

Nanobiotechnology

Course Objectives

The course aims at providing a general and broad introduction to multidisciplinary field of nanotechnology. It will familiarize students with the combination of the top-down approach of microelectronics and micromechanics with the bottom-up approach of chemistry/biochemistry; a development that is creating new and exciting cross-disciplinary research fields and technologies. The course will also give an insight into complete systems where nanotechnology can be used to improve our everyday life.

Student Learning Outcomes

On successful completion of this course, students should be able to describe basic sciencebehindthepropertiesofmaterials at nanometre scale, and the principles behind advanced experimental and computational techniques for studying nanomaterials.

our everyday life.									
		ELECTIVE							
Core	Course code: 501507	Nano- biotechnology	Т	Credits: 2	Hours:				
Pre-requisiteBasic Knowledge in Biology, Chemistry and multi-disciplinary nanotechnologySyllabus Revised2022-23									
		Unit I							
Objective 1	-	knowledge of biology an of nanobiotechnology. U zation nanomaterial.		•					
nanomaterials	and applications with exa	Concepts, historical j ample for specific cases; Janostructures, Synthesis	Cellular Na	mostructures;	Nanopores;				
Outcome 1	•	ground on Nanobiotechr erials and their applic			K1, K2				
		Unit II							
Objective 2	Objective 2 To inculcate knowledge on the various forms of nanostructure, their morphology and architecture and the methods for their characterization								
	Thin films; Colloidal nanostructures; Self Assembly, Nanovesicles; Nanospheres; Nanocapsules and their characterisation								
Outcome 2	Understand process the characterization.	hin film processing a	nd method	ls for their	K2				

	Unit III						
Objective 3	To understand the role of nanoparticle in drug delivery, to utilize nanocarriers for drug delivery and strategies for enhanced permeation through various anatomical barriers.						
administration	for drug delivery, concepts, optimization of nanoparticle properties for su through various routes of delivery, advantages, strategies for cellular int lation, strategies for enhanced permeation through various anatomical barrier	ernalization					
Outcome 3	Understand nanocarriers for drug delivery employing suitable methods and distinguish the properties of various types of nanocarriers and routes of delivery, Explain the synthesis and applications of nanoparticles for drug delivery.	K2					
	Unit IV						
Objective 4	To acquire knowledge and understand unique optical and physic-chemical of nanomaterials that may potentiate their applications in biomedicine, par diagnostics and bioimaging	rticularly in					
*	for diagnostics and imaging (theranostics); concepts of smart stimuli implications in cancer therapy, nanodevices for biosensor development.	responsive					
Outcome 4	Analyze and understand types of bionanomaterials for analysis and sensing techniques.	К3					
	Unit V						
Objective 5	To understand the basic concepts of biocatalysis and to know their applied drug development	cations in					
	for catalysis, development and characterization of nanobiocatalysts, app in synthesis, applications of nanobiocatalysis in the production of drug						
Outcome 5	Learn how to synthesize and characterize nanobiocatalysts, apply the role of enzymes in biocatalysis and how enzymes are incorporated into nanostructured materials and nanobiocatalytic approaches to enzyme immobilization and stabilization	K4, K6					
	Unit VI						
Objective 6	To understand the basic concepts nanotoxycity and its implications to the environment						
assessment; Fa	Safety of nanomaterials, Basics of nanotoxicity, Models and assays for Nate of nanomaterials in different stratas of environment; Ecotoxicity models sessment, containment.	-					
Outcome 6	Learn model assays involve cell culture testing and tissue engineering	K3, K5					
	ring/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Ana aluate, K6 -Synthesis / Create	alyze, K5 -					
	 Suggested Readings: GeroDecher, Joseph B. Schlenoff, (2003); Multilayer Thin F Sequential Assembly of Nanocomposite Materials, Wiley-VC GmbH & Co. KGaA David S. Goodsell, (2004); Bionanotechnology: Lessons from Wiley-Liss 	CH Verlag					

 Neelina H. Malsch (2005), <i>Biomedical Nanotechnology</i>, CRC Press Greg T. Hermanson, (2013); <i>Bioconjugate Techniques</i>, (3rd Edition); Elsevier Recent review persons in the area of Nanomedicine.
 Recent review papers in the area of Nanomedicine. Online Resources: World Wide Web Service and Open AI

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L (1)	L (1)	S (3)	S (3)	L (1)	S (3)				
CO2	S (3)	L (1)	S (3)							
CO3	S (3)	L (1)	S (3)							
CO4	S (3)	M (2)	S (3)							
CO5	S (3)	L (1)	S (3)	M (2)	S (3)					
CO6	M (2)	S (3)	S (3)	S (3)	M (2)	S (3)				
W.AV:	2.5	1.5	3	2.8	2.5	3	3	3	3	3

*3 – Strong 2 – Medium 1 – Low

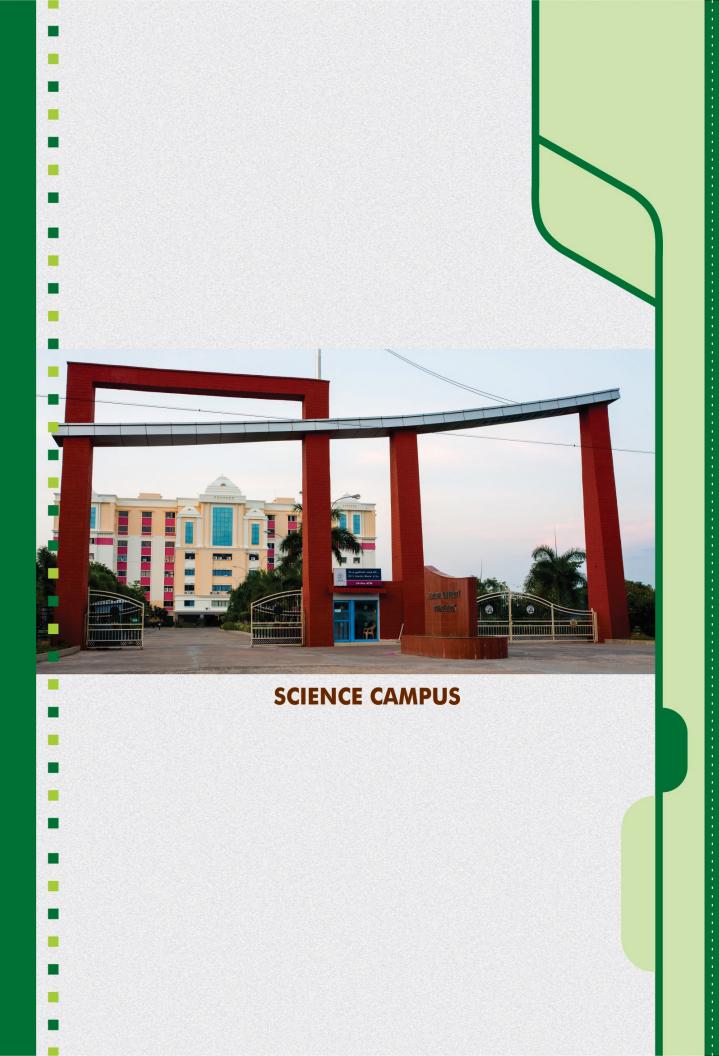
Course Outcome Vs Programme Specific Outcome:

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)	S (3)	S (3)	S (3)	M (2)	S (3)
CO2	S (3)					
CO3	S (3)					
CO4	S (3)					
CO5	S (3)					
CO6	S (3)					
W.AV:	3	3	3	3	2.8	3

vaccines redits	Course Objective This course will an overview of c different areas of	 Student Learning Outcomes By the end of this course, students should be able to: Understand fundamental concepts of human immune system and basic immunology; Differentiate and understand immune responses in relation to infection And vaccination; Understand requirement and designing of different types of vaccines; Understand importance of conventional and new emerging vaccine technologies. 			
		ELECTIVE			
Core	Course code: 501508	Vaccines	Р	Credits: 4	Hours:
Pre-requisite			Syllabus	Revised	2022-23
	-	Unit I			-
	immune response to i	iding innate and ada infection.	Juve minum	ity, 1 and D C	ells, and
Effectors of im	immune response to i of immune system: Ove mune system; Innate & inity; T and B cells in a	infection. erview of Immune sys Adaptive Immunity; daptive immunity; In to comprehend the f n, analyze its role in p ate the importance of	tem; Human Activation of nmune respo undamental p protecting ag	Immune syst of the Innate I onse in infectio principles gainst	em: mmunity;
Effectors of imp Adaptive Immu Correlates of p Outcome	immune response to i of immune system: Ove mune system; Innate & inity; T and B cells in a rotection. Students will be able of the immune systen infections, and evalua	infection. rview of Immune sys Adaptive Immunity; daptive immunity; In to comprehend the f n, analyze its role in p ate the importance of s. Unit II	tem; Human Activation of nmune respo undamental protecting ag immune cor	Immune syst of the Innate I onse in infectio principles gainst relates in	em: mmunity; on; K1
Effectors of ima Adaptive Immu Correlates of p Outcome 1 Objective 2	immune response to i of immune system: Ove mune system; Innate & inity; T and B cells in a rotection. Students will be able of the immune systen infections, and evalua vaccination strategies To explore the divers parasitic infections, i antigen presentation, mediated responses.	infection. rview of Immune sys Adaptive Immunity; daptive immunity; In to comprehend the f n, analyze its role in p ate the importance of s. <u>Unit II</u> se aspects of immune ncluding primary an , and the roles of imm	tem; Human Activation of nmune respo undamental protecting ag immune cor responses to d secondary nune cells in	Immune syst of the Innate I onse in infectio principles gainst relates in bacterial, vira immune respo humoral and o	em: mmunity; on; K1 al, and onses, cell-
Effectors of ima Adaptive Immu Correlates of pr Outcome 1 Objective 2 Immune response infections; Print Role of Antiger Humoral (antib	immune response to i of immune system: Ove mune system; Innate & unity; T and B cells in a rotection. Students will be able of the immune systen infections, and evalua vaccination strategies To explore the divers parasitic infections, in antigen presentation,	infection. rview of Immune sys Adaptive Immunity; daptive immunity; In to comprehend the f n, analyze its role in p ate the importance of s. Unit II se aspects of immune ncluding primary an , and the roles of imm tive immune response sume responses during ritic cells in immune response	tem; Human Activation of nmune respondential protecting ag immune cor responses to d secondary nune cells in in bacterial; v infection; Ante esponse; Innato nses: role of O	a Immune syst of the Innate I onse in infection principles gainst crelates in bacterial, vira immune respondent humoral and parasi- tigen presentat te immune resp CD4+ and CD8	em: mmunity; on; K1 al, and onses, cell- itic ion and oonse; + T cells;

	Unit III	
Objective 3	To explore the immune responses elicited by vaccination, inclunderstanding of adjuvants, antigen delivery systems, modulation of Th2 responses, and the role of chemokines, cytokines, and soluble m vaccination.	of Th1 and ediators in
Modulation of adjuvants and a delivery system	onse to vaccination: Vaccination and immune response; Adjuvants in Vacci immune responses: Induction of Th1 and Th2 responses by using appropria antigen delivery systems - Microbial adjuvants, Liposomal and Micropartic as; Chemokines and cytokines; Role of soluble mediators in vaccination; Of and Mucosal Immunity.	te les as
Outcome3	Students will acquire a comprehensive understanding of how vaccinations induce immune responses, the importance of adjuvants and antigen delivery systems, as well as the significance of oral immunization and mucosal immunity in vaccination strategies.	К3
	Unit IV	
Objective 4	To provide an overview of vaccine types and design, including the his vaccines, conventional vaccines, bacterial and viral vaccines, and vac based on different routes of administration, such as parenteral, oral, mucosal.	ccines and
Vaccines; Vacc	& design: History of vaccines, Conventional vaccines; Bacterial vaccines; cines based on routes of administration: parenteral, oral, mucosal; Live atter cine; Subunit Vaccines and Toxoids; Peptide Vaccine.	
Outcome4	Students will gain a comprehensive understanding of various vaccine types and recognize their significance in modern vaccination strategies, enabling them to appreciate the historical context and advancements in vaccine development.	K2
	Unit V	
Objective 5	Course Objective: To explore the latest vaccine technologies and advancements in vaccine development.	
Vaccination; M for vaccination specificvaccine	ologies: New Vaccine Technologies; Rationally designed Vaccines; DNA Iucosal vaccination; New approaches for vaccine delivery; Engineering viru ; Vaccines for targeted delivery (Vaccine Delivery systems); Disease e design: Tuberculosis Vaccine; Malaria Vaccine; HIV/AIDS vaccine; New ses and vaccine needs (Ebola, Zika).	
Outcome5	Students will gain an in-depth understanding of cutting-edge vaccine technologies, enabling them to appreciate the potential of rationally designed vaccines, DNA vaccination, and mucosal vaccination, as well as grasp the importance of new vaccine delivery approaches. mg/ Knowledge, K2 -Understanding, K3 -Applicant/Apply K4 -Analysis/Ana	K4 & K5 lyze, K5-
	uate, K6 -Synthesis / Create	,, _

 Suggested Readings: Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. J. (2005). Immuno Biology:the Immune System in Health and Disease. USA: Garland Science Pub. Kindt, T. J., Osborne, B. A., Goldsby, R. A., & Kuby, J. (2013). Kuby Immunology.New York: W.H. Freeman. Kaufmann, S. H. (2004). Novel Vaccination Strategies. Weinheim: Wiley-VCH. Online resources: Journal Articles (relevant issues) from: Annual Review of Immunology, Annual Review of Microbiology, Current Opinion in Immunology, Nature Immunology, Expert review of vaccines.
Online Resources:World Wide Web Service and Open AI


	Course Outcome vS Programme Outcomes										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S (3)	M (2)	S (3)	S (3)	L(1)	S (3)	L(1)	L(1)	M (2)	S (3)	
CO2	S (3)	S (3)	S (3)	S (3)	L(1)	S (3)	L(1)	L(1)	M (2)	S (3)	
CO3	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	L(1)	L(1)	M (2)	S (3)	
CO4	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	L(1)	L(1)	M (2)	M (2)	
CO5	S (3)	S (3)	S (3)	S (3)	S (3)	S (3)	L(1)	L(1)	S (3)	S (3)	
W.AV	3	2.8	3	3	2.2	3	1	1	2.2	2.8	

S-Strong (3), M-Medium (2), L-Low (1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S (3)	S (3)	L(1)	S (3)	L(1)	S (3)
CO2	S (3)	S (3)	L(1)	S (3)	L(1)	S (3)
CO3	S (3)	S (3)	L(1)	S (3)	L(1)	S (3)
CO4	S (3)	S (3)	L (1)	S (3)	L (1)	S (3)
CO5	S (3)	S (3)	L(1)	S (3)	L(1)	S (3)
W.AV	3	3	1	3	1	3

S-Strong (3), M-Medium (2), L- Low (1)

