

ALAGAPPA UNIVERSITY

(A State University Established in 1985) Karaikudi - 630003, Tamil Nadu, India

DEPARTMENT OF NANOSCIENCE AND TECHNOLOGY

M.Sc., NANOSCIENCE AND TECHNOLOGY

[Choice Based Credit System (CBCS)] [For the candidates admitted from the academic year 2019 -2020]

CONTENTS

- I. Objectives of the Course
- II. Eligibility for Admission
- III. Duration of the Course
- IV. Course of Study
- V. Teaching Methodologies
- VI. Examinations
- VII. Scheme of Examinations
- VIII. Question Paper Pattern
- IX. Distribution of marks for practical examination
- X. Dissertation /Project Work
- XI. Village Extension Program (VEP)
- XII. Passing minimum
- XIII. Classification of successful Candidates
- XIV. Maximum Duration for the Completion of the Course
- XV. Commencement of this Regulation
- XVI. Transitory Provision
- XVII. Code and Grading
- XVIII. Syllabus
- XIX. Model Question Papers
- XX. List of Question Paper setters / Examiners

I. General objectives of the Programme

- (a) Nanotechnology is one of the key technologies of the 21st century.
- (b) One academic course is necessary to create awareness to students in the emerging field and also it should teach basics, concepts and developments of nanoscience to students to make them as scientist or technologists in this filed.
- (c) The current and future fields of application of nanotechnology are electronics, mechanical engineering, biomedical, satellite, automobile and pharmaceutical industries, the field of new materials and environmetal technology.
- (d) Rigorous and comprehensive in approach, this syllabus presents essential contents in a detailed, clear and direct way.
- (e) The programme is structured in such a way to impart more knowledge in science, in particular in Chemistry, Physics and Biology.

Programme specific objectives

- (a) This course help learn advances in nanotechnology
- (b) Foster the transfer of new technologies into products for commercial and public benefit
- (c) Understand the synthesis of nanomaterials and their application and the impact of nanomaterials on environment
- (d) Apply their learned knowledge to develop Nanomaterials.

Programme outcome

On successful completion of the programme

- (a) The students will be able to engage in noteworthy, self-govering, and creative research in Nanoscience& Technology.
- (b) The skill-based courses support the student to develop entrepreneurship in the current field of Nanoscience & Technology.
- (c) The student acquired significant knowledge and update the mankind currenttechnology.

II. Eligibility for Admission

A candidate who has passed B.Sc., Degree Examination with Mathematics, Physics, Chemistry and Biology as main subject of study of any university or any of the B.Sc., degree examination with specialization such as Mathematics, Applied Mathematics, Applied Physics, Electronics, Nuclear Physics, Biophysics, Industrial chemistry, Polymer Chemistry, Applied Chemistry, Pharmaceutical Chemistry, Biotechnology, Nanoscience, Nanobiotechnology, Biochemistry and Micro-biology or any other specialization in Mathematics, Physics, Chemistry and Biology and B.E/B.Tech in ECE,EEE, Chemical Engg., Petrochemical Engg., Mater.Sci. & Engg.,Nanotechnology, Biotechnology and Bioinformatics of some other university accepted by the syndicate as equivalent thereto, subject to such condition as may be prescribed therefore shall be permitted to appear and qualify for the M.Sc. Degree in Nanoscience and Technology of this University after a course of study of two academic years.

III. Duration of the Course

The course for the degree of Master of Science in Nanoscience and Technology shall consist of two academic years divided in to four semesters. Each Semester consist of 90 working days.

IV. Course of Study

M.Sc. Nanoscience and Technology (CBCS - Structure of the Course)

S.No	Paper Code	Title of the Paper	Credit	Hrs/ Wee k	CIA Marks	ES E Ma rks	Total Marks
	•	Core Courses		•			
		I -Semester					
1.	533101	Basics of Mathematics and Quantum Mechanics	asics of Mathematics and Quantum Mechanics 5		25	75	100
2.	533102	Basics of Materials Science	5	5	25	75	100
3.	533103	Basic Biotechnology	5	5	25	75	100
4.	533104	Introduction to Nanoscience	5	5	25	75	100
5.	533501	Major Elective -I	4	4	25	75	100
6.	533107	Nano Science and Technology Lab-I (Nanophysics Experiments)	3	6	25	75	100
		Total	27	30			
		II -Semester			·		
7.	533201	Synthesis of Nanomaterials	5	5	25	75	100
8.	533202	Characterization of Nanomaterials	5	5	25	75	100
9.	533203	Applications of Nanomaterials	5	6	25	75	100
10.		Non-major Elective(NME) – I	2	3	25	75	100
11.	533207	Nano Science and Technology Lab – II (Nano-chemistry Experiments)	4	8	25	75	100
	SLC	MOOCs-Swayam	Extra credit				
		MOOCs-Swayam /Library /Yoga/ Career Guidance		3			
			21	30			
		III -Semester					
12.	533301	Nano Biotechnology and Nano Medicine	5	5	25	75	100
13.	533302	Nanoelectronics and Nanodevice	5	5	25	75	100
14.	533303	Nanoengineering	5	5	25	75	100
15.	533503	Major Elective – II (Microsystem Technology)	4	4	25	75	100
16.		Non-major Elective –II	2	3	25	75	100
17.	533307	Nano Science and Technology Lab – III (Nano-biotechnology Experiments)	4	8	25	75	100
		MOOCs-Swayam	Extra credit				
			25	30			
		IV-Semester					
18.	533508	Elective Course – IV - Nanotoxicology	4	4	25	75	100
19.	533999	Project - Report & Viva voce	13	26	25	75	100

		Elective Course					
1.	533501	Thin FilmTechnologies and Characteristics	4	4	25	75	100
2.	533502	Condensed Matter Physics	4	4	25	75	100
3.	533503	Microsystem Technology	4	4	25	75	100
4.	533504	33504 Information Storage Materials and Devices 4 4 25 75					100
5.	533505	Computer Simulation and Modelling	4	4	25	75	100
6.	533506	Polymer nanocomposites	4	4	25	75	100
7.	533507	Nanobiomaterials and nanobiotechnology for tissue engineering	4	4	25	75	100
8.	533508	Nanotoxicology 4 4 25				75	100
		* NME/Supportive Courses for other Dep	oartments				
1.	533703	Introduction to Nano Scale in Science and Technology	2	3	25	75	100
2.	533704	Nanotechnology and Advanced drug delivery System	2	3	25	75	100

Note: C – Core Courses, E – Elective Courses & S – Supportive Courses; L – Lecture,

Tutorial, P – Practical, C-cerdit.

V. Teaching Methodologies

The classroom teaching would be through conventional lectures and use of OHP and Power Point presentations. The lecture would be such that the student should participate actively in the discussion. Student seminars would be conducted and scientific discussions would be arranged to improve their communicative skill.

In the laboratory, instruction would be given for the experiments followed by demonstration and finally the students have to do the experiments individually.

Periodic tests would be conducted and for the students of slow learners would be given special attention.

VI. Examinations

The examination shall be three hours duration to each paper at the end of each semester. The candidate failing in any subject(s) will be permitted to appear for each failed subject(s) in the subsequent examination.

Practical examinations for M.Sc. course in Nanoscience and Technology should be conducted at first, second and third semester.

At the end of fourth semester viva-voce will be conducted on the basis of the Dissertation report submitted by the student. One internal and one external examiner will conduct the viva-voce jointly.

(For all theory courses)

Max. Marks: 75

Time: 3 Hours PART-A: 10x2=20

(Answer all questions)

(Two questions from each unit)

Q.No. 1 – 10

PART-B: 5x5=25

(Answer all questions)

(One question from each unit with internal choice)

- 11. a) or b)
- 12. a) or b)
- 13. a) or b)
- 14. a) or b)
- 15. a) or b)

PART-C: 3x10=30

(Answer any three questions) (One question from each unit)

Q.No. 16 - 20

Nano-Physics Practical	Marks	
Formula	10	
Experiment	40	
Viva-voce in practical	10	
Record	10	
Accuracy of result	5	
Total	75	

Nano-chemistry Practical	Marks	
Procedure	10	
Preparation	40	
Viva – Voce in practical	10	
Record	10	
Better result	5	
Total	75	

Nano-biotechnology PracticalMarks				
Procedure	10			
Experiment	40			
Viva-voce in practical	10			
Record	10			
Better result	5			
Total	75			

X. Dissertation / Project Work

Dissertation / Project Work: 100 ma	arks
Periodic Presentation of Learning	25 marks
Concise Dissertation	50 marks
Viva-Voce	25 marks
Total	100 marks

(a) Plan of Work:

The student should prepare plan of work for the dissertation, get the approval of the guide and should be submitted to the university during the fourth semester of their study. In case the student wants to avail the facility from other University/laboratory, they will undertake the work with the permission of the guide and acknowledge the alien facilities utilized by them. The duration of the dissertation research shall be a minimum of three months in the fourth semester.

(b) Dissertation Work outside the Department:

In case the student stays away for work from the Department for more than one month, specific approval of the university should be obtained.

(c) No. of copies/distribution of dissertation:

The students should prepare four copies of dissertation and submit the same for the evaluation by

Examiners. After evaluation one copy is to be retained in the Department library and one copy is to be submitted to the University (Registrar) and one copy for guide and one copy can be held by the student.

(d)Format to be followed:

The format/certificate for dissertation to be submitted by the students are given below:

Format for the preparation of project work:

- (a) Title Page
- (b) Bonafide Certificate
- (c) Acknowledgement
- (d) Table of contents

CONTENTS

Chapter	TITLE	Page No.
No.		
1.	Introduction	
2	Review of Literature	
3.	Materials and Methods	
4.	Results	
5.	Discussion or Results and Discussion	
6.	Summary	
7.	References	

Format of the Title Page: TITLE OF THE DISSERTATION

Dissertation Submitted in part fulfillment of the requirement for the Degree of Master of Science in Nanoscience and Technology to the Alagappa University, Karaikudi

By

Students Name:

Register Number:

Department of Nanoscience and Technology Year:

Format of the Certificate: CERTIFICATE

This is to certify that the dissertation entitled submitted in partial fulfillment of the requirement of the degree of Master of Science in Nanoscience and Technology to the Alagappa University, Karaikudi is a record of bonafide research work carried out by------ under my supervision and guidance and that no part of the dissertation has been submitted for the award of any degree, diploma, fellowship or other similar titles or prizes and that the work has not been published in part of full in any scientific or popular journals or magazines.

Date:

Place:

Signature of Guide

Approved by

Head of the Department

External Examiner

Guidelines for approval of M.Sc. Nanoscience and Technology guides for guiding students in their research for submitting dissertation:

- 1. M.Sc. Nanoscience and Technology (Partial fulfillment) Guide:
 - a) The person seeking for recognition as guide should have:
 - A Ph.D. Degree in Science discipline

(or)

b) M.Phill / M.Sc. degree in Science with first class/second class

Should have 3 years of active teaching/research experience

They should have published at least one research paper in a National Journal authored solely or jointly.

- 2. Procedure for submitting application for approval as guides:
 - (i) The University will on request give prescribed application form.
 - (ii) The filled in applications should be submitted before the close of said date by the University.
 - (iii) All such applications should be routed through the HOD with specific recommendations.
 - (iv) All relevant proofs should be submitted along with the applications.

3. Approval:

The committee constituted for the purpose will scrutinize the applications and recommend for approval/rejection. Orders will then be passed by the authority of the University and communicated to each member individually through the Principal.

XI. Village Extension Programe (VEP)

The Sivaganga and Ramnad districts are very backward districts, where a majority of the people lives in poverty. The rural mass is economically and educationally backward. Thus the aim of the introduction of this Village Extension Programe (VEP) is to extend outreach programs in environmental awareness, hygiene and health to the rural masses of this region. The students in their Third semester have to visit any one of the villages within the jurisdiction of Alagappa University and can arrange various programmes to educate the rural masses in the following areas for three days. A minimum of two faculty members can accompany the students and guide them.

1. Environmental awareness

2. Hygiene and health

This course is a compulsory for all the M.Sc Nanoscience and Technology students of the Centre for Nanoscience and Technology, Alagappa University. Students will be awarded TWO credits apart from the minimum credits 90 to be earned for the M.Sc. programme.

XII. Passing Minimum

The candidate shall be declared to have passed the examination if the candidate secures a minimum of 50 % (50 marks out of 100 marks) in the University external examination. Then half of the total marks secured by the candidate will be taken and add with his/her internal marks (Maximum marks 50).

For a pass in the Practical paper, a candidate has to secure a minimum of 50%(25 marks) marks in the University (external) (50 marks) examination. He/she should get a minimum of 50 marks out of 100, an aggregate of internal (50 marks) and external marks (50 marks) and the record notebook taken together. There is no passing minimum for the record notebook. However submission of a record notebook is a must.

For the project work and viva-voce a candidate should secure 50% of the marks for pass. The candidate should compulsorily attend viva-voce examination to secure pass in that paper.

Candidate who does not obtain the required minimum marks for a pass in a paper/Project Report shall be required to appear and pass the same at a subsequent appearance.

XIII. Classification of Successful Candidates

Candidates who secure not less than 60% of the aggregate marks in the whole examination shall be declared to have passed the examination in First Class. All other successful candidates shall be declared to have passed in the Second Class.

Candidates who obtain 75% of the marks in the aggregate shall be deemed to have passed the examination in First Class with Distinction provided they pass all the examinations prescribed for the course at the first appearance.

Candidates who pass all the examinations prescribed for the course in the first instance and within a period of two academic years from the year of admission to the course only are eligible for University Ranking.

A candidate is deemed to have secured first rank provided he/she

(i) should have passed all the papers in first attempt itself

(ii) should have secured the highest over all grade point average (OGPA)

XIV. Maximum Duration for the Completion of the Course

The maximum duration for completion of M.Sc. Degree in Nanoscience and Technology Programme shall not exceed eight semesters from their first semester.

XV. Commencement of this Regulation

These regulations shall take effect from the academic year 2019-20.i.e., for students who are to be admitted to the first year of the course during the academic year 2019-20 and thereafter.

XVI. Transitory Provision

Candidates who were admitted to the M.Sc. Nanoscience and Technology course of study before 2019-2020 shall be permitted to appear for the examinations under those regulations for a period of three years i.e., up to and inclusive of the examination of April/May 2021. Thereafter, they will be permitted to appear for the examination only under the regulations then in force.

XVII. Code and Grading.

1. Legend

5 3	3	Х	Y	Ζ
-----	---	---	---	---

533 NANOSCIENCE – M.Sc.

XSemester No:1 - coreYCourse :4/1- elective/interdisciplinary

Z Course number in the semester

- 2. Each student should take 90 credits including core course, elective courses and interdisciplinary courses and 4 credits in computer applications/communication skill and 2 credits in village extension programme, totalling at least 90 + 2 credits to complete M.Sc., NANOSCIENCE AND TECHNOLOGY degree course.
- 3. Students may be allowed to take more than 3 or 4 credits in elective/ interdisciplinary courses in a semester from the courses offered by the department in inter-disciplinary subjects as suggested by the course advisor.

The extra credits (above 12) secured in elective/ interdisciplinary courses will be entered in the mark list separately.

- 4. Each paper carries 4 or 3 or 2 credits with 50 marks in the university examination and 50 marks in C.I.A. The university examination will be of three hours duration.
- 5. For a pass in each paper, the candidate is required to secure at least 50% in the university examinations and 50% in the aggregate. (Including ,C.I.A).
- 6. If the total aggregate marks obtained by the candidate is X%, put together for all papers comprising the 84 credits, then,

,			
Raw ScoreGrade	Descr	iption	Grade Points
90 and above	Ο	Out standing	9.0 - 10.0
80 to 89	А	Very Good	8.0 - 8.9
70 to 79	В	Good	7.0 - 7.9
60 to 69	С	Very poor	6.0 - 6.9
50 to 59	D	Satisfactory	5.0 - 5.9
Less than 50 F	Failur	es	
	V	Inadequate Att	endance'
	W	Withdrawal fro	om the course

	Semester – I							
Course code:533101	Basics of Mathematics and Quantum MechanicsCredits: 5Hours : 5							
Objectives	> To achieve an understanding of the theory of quantu							
	ability to apply the quantum theory to important phy	-						
	To become aware of the necessity for quantum methers and solid state physical systems of stamic and solid state physical	lods in the ana	lysis of					
Unit - I	physical systems of atomic and solid state physics Vector & Special Function							
Unit - I	Vector space, linear transformation - Inverse transform	mation - Det	ermination of					
	Eigen values and Eigen vectors. Beta and Gamma fund							
	and Laguerre polynomials and Bessel functions- Gene	-						
	formula, Orthogonal properties and recurrence relations	-	ii, noungues					
Unit - II	The Physical Basis of Quantum Mechanics: - Limit		ical physics –					
	Plank's Quantum hypothesis- Einstein's Photoelectr		· ·					
	particle Wave-particle duality, Schrödinger time depend							
	equations and expectation values, Uncertainty principle.	· · · · · · · · · · · · · · · · · · ·						
Unit - III	Bound States & Quantum Tunneling: - Free pa	rticle - Mon	nentum eigen					
	functions, Energy levels of a particle – Infinite square		•					
	and three dimensions(3D) - Density of states – Confin	(
	propagation in devices - Quantum confinement - Penet	ration of a bar	rrier – Tunnel					
	effect - Basic principles of a few effective devices - Res	sonant tunnel o	diode,					
	Superlattice, Quantum wire and Dot-Oscillatory dynan	nics.						
Unit - IV	Optical properties and interactions of nanoscale materials: - Size-dependent							
	optical properties: Absorption and emission, Basic	e quantum r	nechanics of					
	linearoptical transitions, General concept of exciton	s, Wannie re	xcitons, Size					
	effects in high-dielectric-constant materials, Size effect	s in П-conjug	ated systems,					
	Strongly interacting Π -conjugated systems: A molecular dimer, Size-dependent							
	electromagnetic interactions: Particle-particle Forster resonant energy transfer							
	(FRET).Photo-induced electron transfer.							
Unit - V	Semiconductor Band-Gap Engineering : - Energy	bands in so	lids, the E-k					
	diagram, Density of states, Occupation probability, Fe		•					
	levels, p-n junctions, Schottky junction and Ohmic							
	optoelectronic materials, Bandgap modification, Hetero	structures and	Quantum					
	Wells.							
	d Textbooks:-							
	2004), Quantum Mechanics, Printice hall of India Pvt Ltd							
•	P. (2009). Semiconductor optoelectronic devices. New De							
	Bhārmā, R. (2015). <i>Mathematical Physics</i> :. Rama Nagar	r, New Delhi:	S. Chand &					
	any Pvt.	Constant to a D						
Press.	. (2017). Introduction to quantum mechanics. Cambridge:	Cambridge U	niversity					
	5). Semiconductor optoelectronics: Physics and technology. New York: McGraw-							
- ,	5). Semiconductor optoelectronics: Physics and lechnolog	<i>y</i> . INEW YORK:	wicoraw-					
Hill.	2010) Nanosala physics for materials science Dore Det		ross					
,	2010). Nanoscale physics for materials science. Boca Rate							
-	. (2008). Introduction to mathematical physics. Weinheim (2008). Introduction to mathematical physics. Weinheim	•						
Website-Refe	. (2008). Introduction to mathematical physics. Weinheim	i. wiley-vCH						
	//epgp.inflibnet.ac.in/view_search.php?&category=19026	& ft=et						
-	/epgp.inflibnet.ac.in/view_f.php?category=190206							
2. mups./	repsp.mmonet.ac.m. rew_1.pnp.category=1052							

3. http://simons.hec.utah.edu/NewUndergradBook/Chapter1.pdf

Outcomes	The students should be able to understand the basic and advanced concepts
	to analyze the Quantum Mechanics and mathematical physics.
	Scientifically improvement of new applications of quantum physics in
	computation.
	To become aware of the necessity for quantum methods in the analysis of
	physical systems of atomic and solid state physics.
	To appreciate the applications of quantum mechanics in physics,
	engineering, and related fields.

Name of the Course Teacher Dr.G.Ramalingam, Assistant Professor.

		Semester – I						
Course code 533102	e:	Basics of Materials Science	Credits: 5	Hours : 5				
Objectives	≻ To a	cquire basic understanding of advanced materi	als, their funct	ions and				
	prop	erties for technological applications.						
	 To understand the principal classes of Metals, Semiconductors and their 							
	functionalities in modern engineering science.							
Unit - I Crystal Symmetry and Structure Determination: - The Growth and form								
	crystal - Crystal system - Space lattices and Unit cell - Crystal Symmetry-							
Miller indices – Statistical thermodynamic of crystals - symmetry distributi								
crystals – Scherrer's equation-crystalline size determination -Imperfect								
	Crystal-	Schottky and Frenkel defects.	-					
Unit - II	÷	re of Solids: - The crystalline - Noncrystalline	states – Classi	fication of				
	Solids –	Amorphous Solids, Crystalline Solids – Prope	rties of Solids	- Mechanical				
	propertie	es, Electrical properties, Optical Properties, Ma	ignetic propert	ies, Fermi-				
		lectronic distribution in solids, Energy Bondin						
		xcitations: phonons, plasmons, Magnons, Pola	•					
		e - Connection to Transport Properties –Densit						
	-	orption-Inorganic solids-Covalent solids, Meta	•	-				
		ar solids, Structure of silica and silicates.		,				
Unit - III		Semiconductors and Dielectric materials: -	Metals - Atom	ic Structure -				
	-	and electronic properties, thermal conductivity						
		als - Semiconductors - energy gap in solids – b		•				
		conductors, Semiconductor devices.		/ 51				
Unit - IV		ric materials: - Polymeric Materials - Electric	al Properties of	f Polymers -				
	•	ation of polymers – Polymer Crystallinity - M	•	•				
		properties, Heat-thermal – Gas barrier – ionic	•					
		ency - Biodegradability behavior, structure of l	•	•				
	-	nity of long chain polymers. Stress strain beha	• • •					
	-	tion - viscoelastic deformation – deformation of		-				
		ed polymeric materials.	5	1 5				
Unit - V		s and defects: - Defects in solid structures – po	oint defects – e	xtended defects				
	·	Defects – dislocations – grain boundaries – ro						
		es of solids – grain boundary volume in micros						
		n microscopic and nanocrystals – surface effect	-	•				
	due to severe plastic deformation – stacking faults – Hall Petch behavior –							
		tion in FEE and HCP nanostructures.						
Reference a	nd Texth	ooks:-						
		J. D., & Keeler, J. (2019). Atkins physical che	<i>mistry</i> . Oxford	: Oxford				
	versity Pr		2					
	•	densky, D. D. (2001). Low-dimensional semico	onductor struct	tures:				
		and device applications. New York: Cambridg						
		chi, T. (2003). Crystal growth technology. Nor						
		<i>Iaterials science and technology</i> . Washington,						
Pres								
). Materials science and engineering an introa	<i>uction</i> . La Hal	ana: Editorial				
	x Varela.	,		Landi Danomul				
		7). Introduction to materials science and engin	neering Boca	Raton:				
-	,	& Francis.	icering. Doed					
CIN		12						

Fischer, T. E. (2009). Ma	terials science for engine	ering students. Amste	erdam: Elsevier/Academic
Press.			

Goddard, W. A. (2002).	Handbook of nanoscience,	engineering,	and technology.	Boca Raton,
FL: CRC.				

- Karas, G. V. (2005). *New developments in crystal growth research*. New York: Nova Science Publishers.
- Lu, G. Q., & Zhao, X. S. (2006). *Nanoporous materials: science and engineering*. London: Imperial College Press.

Markov, I. V. (2017). *Crystal growth for beginners: fundamentals of nucleation, crystal growth, and epitaxy.* New Jersey: World Scientific.

- Narayan, R. (1983). An introduction to metallic corrosion and its prevention. New Delhi: Oxford & IBH.
- Pillai, S. O. (2018). *Solid state physics*. London, UK: New Academic Science, an imprint of New Age International (UK) Ltd.
- Raghavan, V. (2015). *Materials science and engineering: a first course*. Delhi: PHI Learning Private Limited.
- Raghavan, Y. S. (2010). *Nanostructures and nanomaterials: synthesis, properties and applications*. New Delhi: Arise Publishers & Distributors.
- Shackelford, J. F. (2016). *Introduction to materials science for engineers*. Pearson Education: Harlow.
- Wasa, K., Kitabatake, M., & Adachi, H. (2011). *Thin films material technology: sputtering of compound materials*. Berlin: Springer.

Website References

1. https://epgp.inflibnet.ac.in/view_f.php?category=1640

2. https://epgp.inflibnet.ac.in/view_f.php?category=1673

Outcomes	To emphasize the significance of materials selection in the design process
	> To get familiarize with the new concepts of Nano Science and Technology
	> To educate the students in the basics of instrumentation, measurement,
	dataacquisition, interpretation and analysis
	> To appreciate the applications of materials science in engineering and related
	fields.

Name of the Course Teacher **Dr. P. Shakkthivel, Professor.**

		Semester – I				
Course code 533103	e:	Basic Biotechnology	Credits: 5	Hours : 5		
Objectives	≻ Lear	n about the structure and function of biomolecu	les in living sy	stem.		
	To st	rengthen the knowledge on various cloning and	l expression ve	ctors.		
	≻ To in	npart the importance genetic engineering.				
	≻ To m	ake the students understand the concepts and a	pplication of tr	ansgenic		
	anim	als and plants and its application.				
	➤ To fa	miliarize and expose the students to fundament	als of biologic	al database and		
	its ap	plication in genomics and proteomics.				
Unit - I	Biotechr	ology: - Basic concepts of Biotechnolog	y Structure	of atom and		
	molecule	s,Bonding in biological system, Structure and	properties of v	vater, Buffers in		
	biologica	l system;Structure and function of cells -	prokaryotes	and eukaryotes,		
	Structure	and organization of membrane, memb	rane transpor	t; Structure,		
	classifica	tion and biological importance of carbohydrate	s, amino acids	, Protein,		
	nucleic a	cid and lipids; Enzymes – classification, kinetic	es and applicat	ion.		
Unit - II		Engineering: - Scope and Milestones in				
		ion and Gene Regulation; Molecular tools us	-	-		
	DNA m	odifying enzymes, vectors and host system;	Gene cloning	g-ethical issues,		
	Merits a	nd Demerits of cloning; - Gene Therapy;. Biote	chnological a	oplications of		
	rDNA te	echnology.				
Unit - III	Plant]	Biotechnology: - Plant cell and Tissue c	ulture – In	vitro culture		
		ologies -Callus Culture, Cell Suspension Cultu				
		ropagation, Somatic Embryogenesis; App	-	-		
	Engineering in crop improvement-green house technology, plants as bioreactors,					
	transgenic plants and its application.					
Unit - IV	Animal	Biotechnology: - Scope of animal biotechnolog	gy - Technique	es of animal cell		
	and tissu	ue culture- Culture media, growth factors, labor	ratory facilities	s, characteristics		
	of cells	in culture - Primary culture, immortal cells, c	ell lines, Mai	ntenance of cell		
	lines in	the laboratory; application of animal cell	culture; ste	m cell culture;		
	Transge	nic animal production – Methods of gene transf	er, Transgenic	animals model		
	for hum	an disorders .				
Unit - V	Microb	ial Biotechnology: - Environmental pollution	- Types, Cau	ses, Effects and		
	Control	measures; Bio remediation -concepts, biorem	nediation of to	oxic metal ions,		
	phytore	mediation, Microbial leaching mechanism; Bi	oactive metab	olites - Primary		
	metabol	ites, Secondary metabolites, Enzyme Technolog	gy, Single cell	protein,		
	Biomass	and Bio-energy, Bio-gas production.				
Reference a						
Al-Rubeai	, (2014). /	Animal Cell culture. Springer International Publ	ishing. Zahoo	rullah, S.		
(201	5). A Text	book of Biotechnology. SM online LLC.				
Brown, T.	(2006). G	ene cloning and DNA analysis (Fiftgh edition e	ed.). Blackwell			
Freshney,	R. I. (201	5). Culture of Animal cells: A Manual of Basic	technique and	Specialised		
App	<i>lication</i> (S	eventh Edition ed.). Wiley Blackwell.				
Gayatri, (2	2015). Pla	nt Tissue Culture: Protocols in Plant Biotechno	ology. Alpha S	cience		
	rnational.		•			
Godbey, W	W. (2014).	An Introduction to Biotechnology: The Science	technology ar	nd medical		
-		Academic Press, Elseiver.	0,			
11						

Primrose, S. (2	2014). Principles of Gene manipulation and genomics (Seventh Edition ed.).
Blackwe	ell.
Sambrook, J. (2007). A Laboratory Manual, Cold spring harbour laboratory press. Cold spring
harbour	laboratory press.
Smith, R. (201	3). Plant tissue culture experiment and techniques (Third edition ed.). Academic
Press, E	lseiver.
Stewart, C. N.	(2016). Plant Biotechnology and genetics: Principles, Techniques and
Applicat	tions (Second Edition ed.). John Wiley and Sons.
Website Refere	nces
1.https://epgp.in	flibnet.ac.in/view_f.php?category=1826
2. https://epgp.ir	nflibnet.ac.in/view_f.php?category=1038
3. https://epgp.ir	iflibnet.ac.in/loaddata.php?action=loadpaperlist1&maincat=3
4. https://epgp.in	flibnet.ac.in/ahl.php?csrno=2
5.https://nptel.ac	.in/courses/102105034/
6.https://nptel.ac	.in/courses/102103016/
Outcomes	▶ Understand the basic concepts of biotechnology and apply their knowledge in
	advanced area of nanoscience for the betterment and advancement of their
	professional career
	> Understand the animal and plant cell culture techniques, which will help the
	students in micro and macro level manipulations of plants and animals for
	applications in environmental monitoring and health care.
	> Gain expertise in the existing bioinformatics tools and resources for
	computational analysis of biological data. Understanding the problems related
	to genomics and proteomics, will be useful for the students in the modeling &
	analysis of living system.
	Letter and the second se

Name of the Course Teacher Dr. N. Suganthy, Assistant Professor.

				Seme	ster – I					
Course code:					Nanoscier			edits: 5	Hours	
Objectives	apj	olications.		-	-	nanotechn properties				
	-		oncepts in f nanotech		science, c	hemistry, p	physics	s, biology	and eng	gineering
	Sea pro	arch, read	and pres	ent curre	nt nanoted	n design, en chnology li where the f	iteratur	e applied	to a p	particular
	to ≻ Ide	15 years. entify soc	cietal and	technol	ogy issue	es that m	nay ir	npede th	e adoj	ption of
	cha	ange towar	d nanotecl	nnology.						
Unit - I	confine	ement effe	ct, penetra	tion of a l	parrier-Tur	cance of National effect, eramics, Al	Differe	ent types o		
Unit - II	Transit Contro Sponta	tion – fund l of the neous Co position	lamentals Nanometri ondensatio	of nucleat c State – n of Na	ion growth Aggregati noparticles	f Phase Tr n – Controll on – Stabi s: Homoge Condensati	ling Nu lity of eneous	ucleation & f Colloida Nucleati	& Grow l Dispe on –	rth – Size ersions – Spinodal
Unit - III	dimens cerami unique	sional – th cs and cor ness in t	nree dimen nposites – hese prop	sional na size deper erties cor	no structu ndent prop npared to	ero dimens red materia erties – mee bulk and vanced nance	als – m chanica micro	netals – so al, physica oscopic so	emicono il and cl olids. B	ductors – hemical - Biological
Unit - IV	Laws grain b forces interpa molecu potenti thermo	governing ooundaries between rticle forc iles and p als – Fo	y Nanoma , surfaces surfaces ces – cova polarization rces betw of self-a	terials: - – strong in – simila: ilent and n – weak een solva	Forces be ntermolecu rities and coulomb intermole ttion, hyd	etween ator llar forces - difference interactions ecular force ration; pol bilayers,	ms and - Van d es betv s – int es and ymers	l moleculo der Waals ween inte teractions total inte at surfac	es, part and ele ermolec involvi ermolec ces; ad	icles and ctrostatic ular and ing polar ular pair hesion –
Unit-V	Colloi system Mesose self-as moven	ds and s -prepar cale - surf sociating s nent -Surfa	Interfacia ation - s ace thermo- systems -th	tructural odynamics ermodyna dynamics	character s- Nanoflu umic and e	sification-st istics-Solid- idics- Adso lectrostatic ension- Air-	-liquid orption proper	-gas phas Absorption ties of col	ses- Na on- Mi lloids- H	anoscale- cells and Brownian

Reference and Te	extbooks:-							
Malhotra, B. D., &	& Ali, M. A. (2018). Nanomaterials for biosensors: Fundamentals and applications.							
Amsterdam: Elsev								
Klabunde, K. J. (2	Klabunde, K. J. (2001). Nanoscale materials in chemistry. New York: Wiley Interscience.							
Kontogeorgis, G. 1	M., & Kiil, S. (2016). Introduction to applied colloid and surface chemistry. Chichester,							
West Sussex: Wild	ey.							
. ,	Nanofabrication towards biomedical applications: Techniques, tools, applications, and							
impact. Weinheim	•							
	., & Kamat, P. V. (2004). Nanoscale Materials. Boston, MA: Springer US.							
emeyer, C. M., &	Mirkin, C. A. (2007). Nanobiotechnology: Concepts, applications and perspectives.							
Weinheim: Wiley-	·VCH.							
Poole, C. P., & Ov	vens, F. J. (2003). Introduction to nanotechnology. Hoboken: J. Wiley.							
	Müller, A., & R., R. C. (2008). Nanomaterials chemistry: Recent developments and new							
directions. Weinho	eim: Wiley-VCH.							
Ramachandra, R.	C., Müller, A., & Cheetham, A. K. (2006). The chemistry of nanomaterials: Synthesis,							
properties and app	plications in 2 volumes. Weinheim: Wiley-VCH Verlag.							
Ratner, M. A., &	Ratner, D. (2008). Nanotechnology: A gentle introduction to the next big idea. Upper							
Saddle River, NJ:	Prentice Hall Professional Technical Reference.							
Steinhart, M. (200	04). Introduction to Nanotechnology. Von Charles P. Poole, JR. und Frank j. owens.							
Angewandte Chen	nie, 116(17), 2246-2247. doi:10.1002/ange.200385124							
Tsurumi, T., Hiray	yama, H., Vacha, M., & Taniyama, T. (2009). Nanoscale physics for materials science.							
doi:10.1201/b1594	42							
Wilson, M. (2004)). Nanotechnology: Basic science and emerging technologies. Boca Raton: Chapman &							
Hall/CRC.								
Website Reference	ces							
	bnet.ac.in/view_f.php?category=1852							
	ibnet.ac.in/loaddata.php?action=loadpaperlist1&maincat=831							
	in/courses/118102003/							
	n/courses/103103033/module9/lecture1.pdf							
Outcomes	 Knowledge on historical perspective of Nanoscience and technology. 							
	 Basic knowledge on different structures of nanomaterials. Different dimensional structures of nanomaterials. 							
	Different dimensional structures of nanoparticles and nanomaterials.							
	Ideas to synthesis and characterize nanoparticles.							

Name of the Course Teacher Dr. K. Gurunathan/ Dr. C. Balalakshmi

		Se	mester – I					
Course	code:	Nano science a	nd Technology lab-I	Credits:3	Hours : 6			
533107(Nano-Physics Experiments)								
1.	Measurement o	f resistivity of a given Sil	icon nano material by Fo	our probe method.				
2.	Measurement of	f resistivity of a given Al	umina nanomaterial by F	Four probe method.				
3.	Measurement of	f Magnetoresistance of a	given semiconducting na	no material.				
4.	Study of Hall E	ffect.						
5.	Study of the de	pendence of Hall coeffici	ent on temperature.					
6.	Study of P-N ju	inction characteristics.	-					
7.	Thin film spray	and spin nanocoating						
8.		cell I-V Characteristics.						
9.	Hysteresis loop	measurements for the fer	roelectric materials					
10.	Electrical me	asurement techniques:						
	1.ResistivityPo	larization,Dielectricprop	ertiesElectrochemical 2.7	Fechniques(CyclicV	/oltammetry			
11.	To determine th	e lattice constant and latt	tice angles for atomically	resolved STM ima	ge of HOPC			
		ed Pyrolytic Graphite usir			-			
	Software.		0 0	0.0				
12.		e surface roughness of ra	-	nages of glass, silic	on and film			
13.	•	-V Characteristics for a si		h a single quantum	Dot			

Name of the Course Teacher **Dr.G. Ramalinagam, Asst. Professor.**

			Se	emester – II			
Course code				Nanomaterials		Credits: 5	Hours : 5
Objectives	≻ To	pro	vide students an overvi	ew of nanomateria	als and na	nostructures.	
	≻ To	imp	art knowledge to the st	tudents on fundam	nental prin	ciples pointin	g out the unique
	pro	oper	ies of nanomaterials.				
	≻ To	dev	elop theoretical and pra	actical knowledge	on the sy	nthesis and ch	aracterization of
	nar	nom	aterials and nanostructu	ures.			
	≻ To	ma	te the students underst	and the various co	oncepts in	volved in fabi	rication of device
	arc	hite	ctures.				
Unit - I	Physic	al 1	nethods: - Inert gas	condensation, A	rc discha	rge, RF- pla	sma, Plasma ar
	technic	que,	Ion sputtering - I	RF/DC magnetro	on sputte	ering, Laser	ablation, Lase
	pyrolys	sis,n	nicrowave plasma evap	oration, Thermal	evaporati	ion Electron b	eam evapo
			nsferred Arc Plasma Re		•		
Unit - II	Chemi	ical	Methods: - Solvother	rmal synthesis- P	hotochem	ical synthesis	-Electrochemica
			Sol-gel technique –	•		•	
	-		cal method combustion	-			
			ute-growth of nanorod	-	-	-	
Unit - III			mal methods: - Princi				e – Inorganic
	nanotu	bes	and nanorods – Nanofl	owers- nanocrysta	als,Nano-r	rings – chemic	al routes for 1D
			and nanorods –Schlenk	•		-	
Unit - IV			I methods: Grinding				s, WC and ZrO2
			Il ratio, medium for g		-		
			int materials, typical sy		•	• • •	
	anneali		, J1 J	, i		<i>,</i> 1	8
Unit - V		-	Methods: - Biolo	ogically synthesi	ized nan	oparticles -	Phytosynthesis
	0		esis andmycosynthesis	••••		•	• •
			ostructure Formation, 1	-		-	
Reference a				1			
			ynthesis of Nanopartic	les and Nanomate	erials: Bio	logical Appro	aches. Springer
Natu			,				
		Gre	en Processes for Nanot	technology: From	inorgania	c to bioinsprie	dnanomaterials.
Sprin		0.0					
-	C	015	. Fabrication and self	assembly of nanoh	niomateria	als · Applicatio	n of
			s(Vol. 1). William And		<i>iomaterie</i>	us. appicano	<i>n</i> 0 <i>j</i>
			. Nanomaterials in Ant		v [.] Annlico	ation of Nanol	nomaterials
			Elseiver.	inner obtai therap.	y. nppuee	<i></i>	nomater tais.
			crowaves in Nanoparti	icle Synthesis · Fui	ndamenta	ls and Applica	tion Wiley-
VCH				ere synthesis. 1 th	iaamema	is unu rippiteu	<i>mon</i> . whey
)14)	Nanotechnology: Pr	inciples and Pi	ractices(T	Third edition	ed.). Springer
	national	,		incipies unu il	uences(1	lina catton	eu.). Springer
			try of Nanomaterials(S	Second Edition ed) John W	/ilev and Sons	,
			troduction to Nano: Be		·	•	
• •		<i>,</i>	oparticles: Biosynthesi				* •
	kwell.	vun	spuriicies. Diosyninesi	is unu sustainable	Diviecili	οιοχιται ιπρι	
		Duc	gress in Materials Scie	men Rosparch No	va Scienc		
Website R	. ,		sress in muleriuls scle	ence Research. No			
			.in/view f.php?catego	rv=1857			
nups.//epg		ci.a	view_i.piip:catego	1y-1052			

https://npte	el.ac.in/courses/102107058/3			
https://npte	https://nptel.ac.in/courses/103103033/module9/lecture2.pdf			
https://npte	el.ac.in/courses/118102003/			
https://ww	w.slideshare.net/RamalingamGopal/sol-gel-synthesis-of-nanoparticles			
Outcomes	Understand the basic and advanced concepts of nanomaterial preparations.			
	> Understand the importance of synthesis method addressed in the material properties and			
	investigate the various factors influencing the properties of nanomaterials.			
	➢ Gain expertise in optimizing the synthesis methodology and will be able to fabricate nov			
	device architectures and new nanomaterials with novel biological activity.			

Name of the Course Teacher **Dr. N. Suganthy/Dr. K. Gurunathan**

		Semester – II						
Course cod	e:	Characterization of	Credits: 5	Hours: 5				
533202		Nanomaterials						
Objectives	s > To explore different strategies for synthesizing low dimensional nanomate							
	(e.g.,r	nanocrystals, nanotubes, nanowires) and commo	n techniques f	or nanoscale				
	mater	ials characterization.						
	≽ To ga	in knowledge of the various process techniques	to synthesis N	anostructured				
	mater	ials.						
Unit - I	Mechan	ical Characterization: -Hardness and elastic m	nodulus of NPs	s-Micro				
	hardness	s – nanoindensation – fatigue – failure stress and	l strain toughn	ess – abrasion				
	and wea	r resistance – fracture toughness – elasticity of r	nanomaterials	_				
		sticity – plastic nature of nanoceramics – nanon						
		plastic deformation of nanomaterials- Adhesion						
Unit - II		al Characterization: -DC electrical conductivi						
	_ <u>^</u>	ture - Hall effect – types of charge carriers – cha	•	•				
	-	ce spectroscopy – dc electrical resistivity – acti		– bulk and				
	-	undary capacitances – relaxation times of dipole	es.					
Unit - III	-	scopic and Microscopic characterization						
	-	spectroscopy: -Optical absorption spectroscopy						
	-	copy- photoluminescence (PL) - Fourier Transf						
	. ,	Raman spectroscopy - X-ray diffraction (XRD	-	* *				
	ray Photoelectron Spectroscopy (XPS) - Electron microscopy: - Scanning Electron							
		opy (SEM)- Transmission Electron Microscopy	· · · -					
	. ,	M with Selected Area Electron Diffraction (SA)	ED) Atomic F	orce				
		opy (AFM).						
Unit - IV	-	ic Characterization: - Concepts of dia-para-fer		-				
	-	e correlation - exchange interaction – Hysteresi	-	• •				
		ivity – grain size – soft magnets – hard magnets						
	-	tic measurements using VSM – function of tem	-	-				
		ce – magnetic force microscopy – Mossbauer sp						
		ng nanomaterials – NMR – Introduction – Expe		•				
	Chemical shift, dipolar interaction, spin - spin interaction – Applications – ESR –							
Unit - V	Principles and Applications of ESR Spectroscopy. Electrochemical Characterization: -							
Unit - v		iental Principle: Electrochemical cell - ion/ion	interaction an	d Stokes				
		equation - electrode/electrolyte interface - kine						
		Volmer equation - Electroanalytical techniques:						
		es - irrversible - quasi-reversible voltammetry -	•					
		hetry - Electrochemical impedance spectroscopy						
		e - chronopotentiometry chronoamperometry.	Jarvanostat	ie enarge-				
	uisenaig	e - emonopotentionieu y emonoamperometry.						

Reference and Textbooks:-

- Barsoukov, E., & Macdonald, J. R. (2005). *Impedance spectroscopy theory, experiment, and applications*. Hoboken, NJ: Wiley-Interscience.
- Bashir, R., &Wereley, S. (2006). *Biomolecular sensing, processing and analysis*. New York: Springer.

Bhagyaraj, S. M., Oluwafemi, O. S., Kalarikkal, N., & Thomas, S. (2018). Characterization of nanomaterials: advances and key technologies. Duxford: Woodhead Publishing, an imprint of Elsevier.

Desai, T., & Bhatia, S. (2006). Therapeutic micro/nanotechnology. Berlin: Springer.

Fujita, H. (2012). Micromachines as tools for nanotechnology. Springer-verlag Berlin And Hei.

Hosford, W. F. (2010). Physical metallurgy. Boca Raton: CRC Press.

http://shodhganga.inflibnet.ac.in/bitstream/10603/118051/11/11_chapter%204.pdf

https://epgp.inflibnet.ac.in/view_f.php?category=1639

- Ishiwara, H., Arimoto, Y., Ishiwara, H., &Okuyama, M. (2004). *Ferroelectric Random Access Memories*. Berlin, Heidelberg: Springer Berlin Heidelberg.
- Kaupp, G. (2011). *Atomic force microscopy, scanning nearfield optical microscopy and nanoscratching: application to rough and natural surfaces.* Berlin: Springer.
- Micromachines as tools for nanotechnology. (2013). Place of publication not identified: Springer.
- Parthasarathy, B. K. (2007). *Challenges and opportunities in nanotechnology*. New Delhi: Isha Books.

Pecharsky, V. K., &Zavalij, P. Y. (2009). Fundamentals of powder diffraction and structural characterization of material. New York, NY: Springer.

Ramesh, K. T. (2009). *Nanomaterials: Mechanics and mechanisms*. New York: Springer Science.

Thomas, S., Thomas, R., Zachariah, A. K., & Mishra, R. K. (2017). *Spectroscopic methods for nanomaterials characterization*. Amsterdam, Netherlands: Elsevier.

Tominaga, J., & Tsai, D. P. (2003). *Optical nanotechnologies: The manipulation of surface and local plasmons*. Berlin: Springer.

Zhang, J. Z. (2009). *Optical properties and spectroscopy of nanomaterials*. New Jersey: World Scientific.

Outcomes	To know the importance of the synthesis method addressed in the material properties and give practical experience of nanomaterials synthesis/properties
	and characterization.
	> To investigations into the various factors influence the properties of
	nanomaterials, optimizing the procedures, and implementations to the new
	designs.
	To provide a sound understanding of the various concepts involved in
	fabrication of device architectures and able to evaluate them in advance.
	To be able to analyze structural and optical properties of nanostructured materials.

Name of the Course Teacher **P. Shakkthivel, Professor.**

		Semester – II		
Course code:	533203	Applications of Nanomaterials	Credits: 5	Hours: 5
Objectives	The proj ➤ Wha Appl	t nanotechnology is? size and shape dependent properties at the nanon perties of nanomaterials t nano particles are and how it is used currently? ications of nanotechnology in engineering, biome		
Unit - I	microcor Nanotrar based M	s. hic Applications: - Microelectronics – p nponents –molecular electronics –Nanoelectronisistors-photonics – carbon nanotubes (CNT) OSFET – MEMS and NEMS – dye sensitized solar ectrochromic Display Devices-low cost Flat-Panel	onics – memor in electronic apj ar cells – CMOS	ries – LEDs plications – CN
Unit - II	density	c Applications: - Soft magnets for high speed memories-High Energy Density Batteries-H ons – targeted drug delivery – hyperthermia.		
Unit - III	membran hydroxya with Enh	tions of Nanoceramics and Nanocomposites: nes for purification of water – blood and air, catal appetites – inductive bone – replacements – ceram nanced Performance Characteristics.	ysis – tooth and ic valves. Aerosp	bone substitutes pace Components
Unit - IV	leather in resistanc	mental applications: - Nanotoxicology – organic ndustries – removal of bacteria and microbes – wa e to fungal attack – sensors for gases – pressure – g arrestors – varistors. Detoxification of organic /	ter resistant comp temperature – D	posites for walls NA etc., -
Unit - V	applicati Cancer	al applications: - Dendrimers – Bio-functionations ons – self assembly molecules and their application detection/diagnosis via nanotechnologies and etic amplification of nanoparticle homing to tumor	ons – tissue cultu 1 nanosensors/na	ire – nanopharma ano biosensor
Reference and	d Textboo	ks:-		
AndrzejWieck	owski & e	et.al, (2003) Catalysis and Electrocatalysis at Nan	oparticle.	
Chellakumar, Gogotsi, Y, (2 Gupta, R., & F Louis Theodo Neelina, H., &	(2006) <i>Na</i> 006) <i>Caba</i> Francis (20 pre, Rober & Malsch,	(2006). Nanomaterials: Toxicity, health and envir nomaterials for Cancer Therapy, Wiley –VCH pro onNanomaterials. CRC.press 016) NanoparticleTechnology for Drug Delivery. t, & Kunz, G. (2006.). Nanotechnology Environme . (2005). Biomedical Nanotechnology. aohHilt& Brock Thomas, J, (2006)Nanotechnolog	ess. ental Application	and Solutions.
Ralph, S. (20 Rashid,Bashir,	04). <i>Nano</i> , & Steve	pplications, Horizon Scientific press. scale Technology in Biological systems. Wereley (2006) Biomolecular Sensing, Processing	· ·	
<i>Microe</i> Tejal, & Desai	ngeneerin , (2006) 7	5) 2/e, Nano and Microelectromechanical systems. g. Therapeutic Micro /NanoTechnology, Springer. . (2004) Emiconductor and Metal Nanocrystals:sy		-
propert	<i>ties</i> , Marc			op 1004
Website Refe	rence			

https://swayan	n.gov.in/nd1_noc19_mm21/preview
Outcomes	Understand the general physics and chemistry Microelectronics –photolithography.
	Understand processing techniques for nanomaterials Soft magnets for high speed
	memories and applications of Nanoceramics and Nanocomposites.
	> DUnderstand the important applications and properties of nanomaterials in bio field.

Name of the Course Teacher **Dr. C. Balalakshmi, Assistant Professor.**

		Semester – II		
Course c	code: 533207	Nanoscience and Technology Lab – II	Credits: 4	Hours:8
		(Nanochemistry Experiments)		
1.	Synthesis of	Firon oxide nanoparticles by Co-precipitation method	•	
2.	Synthesis of	ZnO nanoparticles by chemical method.		
3.	Synthesis of	SnO ₂ nanoparticles by Chemical sol-gel method.		
4.	Synthesis of	TiO ₂ nanoparticles by Chemical sol-gel method.		
5.	Synthesis of	colloidal nanocmaterials of Au and Ag nanoparticles		
6.	Preparation	of polymer nanocomposites.		
7.	Studies on b	oulk and nanoparticles through UV-Vis spectroscopy.		
8.	Raman spec	troscopy studies on nanomaterials.		
9.	Demo Thin	film characterization through AFM.		
10.	Conductivit	y studies of polymer-nanocomposite material by Four	probe method.	
11.	XRD demo	studies for calculating the size of the nanoparticles and	d nanocomposi	tes by
	Scherrer's f	ormula and mass approximation method	_	
12.	SEM demo	characterization of nanomaterials. for size and surface	morphology	

Name of the Course Teacher **P. Shakkthivel, Professor**

	Semester – III
Course code:	
Objectives	Understand the essential features of biology and nanotechnology that are converging
	to create the new area of bionanotechnology.
	\blacktriangleright To make the students understand the principles behind nanomedicine and its
	application.
	Employ bionanomaterials for analysis and sensing techniques.
	Impart knowledge about drug delivery systems.
	Apprehend and explain the biomedical applications of nanotechnology.
Unit - I	Concept of Biology: - Nanotechnology and Nanomedicine- Medical Nanomaterials
	Tagged nanomaterials- Carbon nanotubes-Dendrimers- Smart Drugs – nanopore-
	Nanowires – Sensors- Nanorobotics- Nanotweezers- Nanomotors-Nanobodies
	Nanocarriers-Nanomedical Diagnosis and Treatment- Biology inspired concepts-
	biological network- biological neurons - the function of neuronal cell - biological neuronal
	cells on silicon modeling of neuronal cells by VLSI circuits - bioelectronics- molecular
	processor - DNA analyzer as biochip.
Unit - II	Nano Biometrics: - Introduction - Lipids as nanobricks and mortar: Self assembled
	monolayers- proteins-3D structures using a 20 amino acids designed protein pores as
	biosensors-DNA as smart glue- DNA as wire template- DNA computer-self assembling
	electronic connections-nanostructures solar cells-DNA chip- DNA based Nanodevices.
Unit - III	Nanocomposites and Bio-polymers: - Classification and structure of Natural fibres
	Regenerated cellulose- Natural fibre composites-Graft co-polymerization- Natural nano
	composites -biologically derived synthetic nano composites — protein based
	nanostructure formation – biologically inspired nano composites. Metal based
	nanocomposites -Nanotechnology in Agriculture (Fertilizers and pesticides)
Unit - IV	Nanotechnology for Imaging and Detection: - Fluorophores and Quantum dots
	Labeling and functionalization, Image analysis, Imaging facilitating surgical approaches
	Nanoparticles for bioanalytical applications – Biosensors - DNA and Protein based
	biosensors – Implantable materials and devices- BioMEMs- Use of nanoparticles for
	MRI, X Ray, Ultrasonography Drug Delivery- Nano devices- Diagnostic Tools – Genetic
	Testing – Imaging – Nanoparticles Probe – Case Analysis – 1) Respirocytes – Mechanica Artificial red Calle – 2) Using DNA as a construction medium
Unit - V	Artificial red Cells – 2) Using DNA as a construction medium.
Unit - V	Prospects of Nano- Medicine: - Nanobiotechnology for drug discovery - protein and
	peptide based compounds for cancer and diabetes - drug delivery - nanoparticle based
De cher ferre eter	drug delivery - lipid nanoparticles - vaccination - cell therapy -Gene therapy.
Books for stu	-
Bawa, R. (201	6). Handbook of Clinical Nanomedicine: Nanoparticles, Imaging, Therapy, and clinical
applic	ation. CRC Press.
Berezin, M. (2	015). Nanotechnology for Biomedical Imaging and Diagnostics: From Nanoparticle design
	<i>lication</i> . John Wiley and Sons.
	4). <i>Cancer Thernostics</i> . Academic press, Elseiver.
	Nanomedicine: Principles and Perspectives. Springer, Newyork.
	(2016). <i>Nanomedicine</i> , . Springer Nature.
	(2014). Nanosciences and Nanotechnology: Evolution or Revolution. Springer, New York.
	15). Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer.
Mirkin, C. (20	
,	ger International.
Spring	ger International. 2016). Drug Delivery Nanoparticles Formulation and Characterization. Informa
Spring Pathak, Y. (2	ger International. 2016). <i>Drug Delivery Nanoparticles Formulation and Characterization</i> . Informancare, USA. 26

Academic Press.

Thakur, V. K. (2015). *Ecofriendly polymer nanocmposites: Chemistry and Applications*. Springer, India. Thomas, S. (2015). *Nanotechnology Applications for Tissue Engineering*. Elsevier, USA.

Visakh, 1. (2016). Nanomaterials and nanocomposites: Zero to three dimensional materials and their

composits. Wiley-VCH.

Web Reference

https://epgp.inflibnet.ac.in/ahl.php?csrno=6 https://nptel.ac.in/courses/118102003/ https://nptel.ac.in/courses/118107015/

 $https://online courses.nptel.ac.in/noc17_bt17/preview$

Outcomes	> Understand how nanotechnology can be tailored and used for biomedical
	purposes.
	> Realize the need and obstacles in polymeric, lipidous and solid nanosized drug
	delivery systems.
	> Understand how nano-relevant instruments such as focused ion beam scanning
	electron microscopes, atomic force microscopes and optical microscopes can be
	used in biomedicine.
	 Perform simple micro fabrication procedure.

Name of the Course Teacher Dr. C. Balalakshmi, Assistant Professor.

		Semester – III		
Course cod 533302	e:	Nanoelectronics and Nano Devices	Credits: 5	Hours : 5
Objectives	▶ T	o understand the basic concepts involve in this technol	ogy for device	architecture
	a	nd interface engineering at atomic.		
	≻ T	o demonstrate how simulation can facilitate learning or	f fabrication p	ocess and
	d	evice designing.		
	≻ T	o understand the limitations of silicon electr	onics and	progress of
	n	anoelectronics.		
Unit - I	Bas	ic of Nanoelectronics: - Basics of nanoelectronics - ca	apabilities of r	ano
	elec	tronics - physical fundamentals of nano electronics - b	basics of inform	nation
	theo	ory - the tools for micro and nano fabrication - basics of	of lithographic	techniques
	for	nanoelectronics.		
Unit - II	Me	mory Devices and Sensors: - Nano ferroelectrics - fer	roelectrics rar	dom access
	mer	nories - introduction - FeRAM circuit design - ferroel	ectric thin filn	n properties
	and	integration – Types of sensors- calorimetric sensors – e	electrochemica	l cells –
	surf	ace and bulk acoustic devices – gas-sensitive FETs – r	esistive semico	onductor gas
	sens	sors - Identification of hazardous solvents and gases -	semiconductor	sensor
	arra	у.		
Unit - III	Spi	ntronics: - Diffusive spin-dependent transport, spin-de	pendent scatte	ring, GMR
	effe	ct, spin-dependent tunneling, ballistic spin transport, L	andau-Lifshitz	Gilbert
	equ	ation, micromagnetics (brief), spin transfer/torque.		
Unit - IV	Sen	niconductor Nanodevices: - Single –Electron Devices	; Nano scale N	IOSFET –
	Res	onant Tunneling Transistor – Single Electron Transisto	ors; Single-Ele	ctron
	Dyr	namics ; Nanorobotics and Nanomanipulation; Mechan	ical Molecula	
	Nar	odevices; Nanocomputers - Optical Fibers for Nanode	vices; Photoch	emical
	Mo	lecular Devices; DNA – Based Nanodevices; Gas-Base	d Nanodevice	s; Micro and
	Nar	omechanics.		
Unit - V	Ele	ctronic and Photonic Molecular Materials: - Prepara	tion- Electrolu	iminescent
	Org	anic materials- Laser Diodes – Quantum well lasers:- (Quantum casca	de lasers -
	Cas	cade surface – emitting photonic crystal laser – Quantu	m dots lasers	– Quantum
	wire	e lasers:- White LEDs – LEDs based on nanowires, nar	notubes and na	norods High
	Effi	ciency Materials for OLEDs –Quantum well infrared p	hoto detectors	-electronic
	proj	perties of carbon based nanomaterials.		
Reference a	and T	'extbooks:-		
Awschalom	, D. (2004). Spin electronics. Dordrecht: Kluwer Academic.		
Bloor, D., B	ryce,	M. R., & Petty, M. C. (1995). Introduction to molecula	ar electronics:	. London:
Arn	old.			
Botti, S. (20	007).	Physical Properties of Carbon Nanotubes. Trivandrum	1.	
Goser, K.,	Glö s	ekötter, P., & Dienstuhl, J. (2004). Nanoelectronics	and nanosys	tems: F n
tran	sisto	rs to molecular and quantum devices. Berlin: Springer.		
-	-	per, P. (2017). <i>Springer handbook of electronic and ph</i> und: Springer.	otonic materia	als. Cham,
Shul, R. J. (2) Waser, R. (2)	2001) 2012)). Wide-bandgap electronic devices. Warrendale, PA: M. Nanoelectronics and information technology: Advance		-
		<i>l devices</i> . Weinheim: Wiley-VCH.		
		aguse, B., Kannangara, K., Smith, G., & Simmons, M. <i>ence and emerging technologies</i> . Strawberry Hills,	(2014). Nanoi	technology:

Web-Referen	ce :
http://www.cir	cuitstoday.com/nanoelectronics
https://link.spr	inger.com/chapter/10.1007/978-94-015-9576-6_6
https://nptel.ac	.in/courses/117108047/
https://nanohul	b.org/
Outcomes	 To give different types of conventional and novel nanoelectronic devices for different applications To study the significance of tunneling effect in nanoelectronic devices To understand the concepts of coulomb blockade and electron transport To emphasize the importance of electronic property of materials in mesoscopic level To understand the underlying physical processes governing the operation of spintronic devices.

Name of the Course Teacher

Dr. G. Ramalingam, Assistant Professor.

		Semester – III		
Course code	: 533303	Nano Engineering	Credits: 5	Hours : 5
Objectives	 high- educa Enab that v gover Prepa comm const Form 	ate a new generation of engineers who can participate in, technology companies that will be the key to maintainin ational infrastructures as nanotechnology results in a new le students to develop a range of professional, scientific a will enhance employment opportunities in a wide range o rnmental institutions. are students for the workplace through developing their a nunication skills, modern science and engineering skills, ructively to multidisciplinary teams. a strong multidisciplinary educational links through joint aditional areas of science and engineering.	g jobs, wealth v industrial rev and computat if industrial an bility to have and contribu	n and volution. ionalskills nd effective te
Unit - I	Semiconductor Nanostructures: - Overview- semiconductor physics, Fabrication techniques, Electronic structure and physical processes in semiconductor nanostructures, Optical Imaging -Lorentz Microscopy -Electron Holography of Magnetic Nanostructures - Magnetic Force Microscopy -Magnetic Data Storage -Introduction - Magnetic Media - Properties -Materials Used -Write Heads -Read Heads.			
Unit - II	Molecular Electronics: - Molecular scale electronics - Molecular materials for electronics – Carbon materials:Fullerene and CNTs, Graphene and RGO - Carbon Nanotubes, Structure and Unique Properties of Carbon Nanotubes – types of Carbon Nanotubes - Applications of Carbon Nanotubes–CNTs in field Emission, Shielding, Field-Effect Transistor and logic gates.			
Unit - III	systems - the perfe Nanoelec radiation	nd Nanoelectrical Systems: - Overview- Micro and - Fundamental concepts - fabrication process- choice of formance of different structures - Nanoelectronic E etronics - advantages and disadvantages of different app sensors, magnetic sensors, chemical sensors, mechanica on to the Nanoscale, Micro component assembly and page	f materials, c Devices - A proaches, the l sensors, Mi	alculations - pproaches to rmal sensors,
Unit - IV	Spintroni Concept barriers dephasing	le Materials and Devices: - Electron Transport in les -Spin Polarized Electron Tunneling - The Datta-Das of the Datta–Das transistor - Spin injection in semicor - Gate-induced spin rotation: The Rashba effect - g - Interlayer Exchange Coupling -Spin Relaxation in i-layers -Non-Equilibrium Spin Dynamics in Laterally D s.	spin field effe nductors - Int Spin relaxat Magnetic M	ect transistor - terface tunnel ion and spin letallic layers
Unit - V	Electron hybridisa polymers formation	ic and Photonic Molecular Materials and Devices: tion, conjugation, excitations, Molecular crystals, cond e, Electroluminescence from an Electrochemical Cell - in n, light emission, Influence of supramolecular order: exc es, liquid crystallinity.	ucting vs sen	ni conducting sport, Exciton

Reference and Textbooks:-

Reference and I	extbooks:-				
Bloor, D., Bryce,	Bloor, D., Bryce, M. R., & Petty, M. C. (1995). Introduction to molecular electronics: London: Arnold.				
Current opinion	in solid state & materials science. (n.d.). London, UK: Current Science.				
Diwan, P., & Bha	aradwaj, A. (2006). Nanorobotics. New Delhi: Pentagon Press.				
Diwan, P., & Bł	naradwaj, A. (2006). Nanorobotics. New Delhi: Pentagon Press.				
Duzer, T. V., & 7	Furner, C. W. (1999). Principles of superconductive devices and circuits. Upper Saddle				
River, N.	J: Prentice Hall PTR.				
Feng, D., &Jin, C	G. (2005). Introduction to condensed matter physics. Singapore: World Scientific.				
Goser, K., Glösek	kötter, P., & Dienstuhl, J. (2004). Nanoelectronics and nanosystems: From transistors to				
molecula	ur and quantum devices. Berlin: Springer.				
Hadziioannou, G	., & Malliaras, G. G. (2007). Semiconducting polymers: Chemistry, physics and				
engineer	ing. Weinheim: Wiley-VCH.				
Heinzel, T. (2010)). Mesoscopic electronics in solid state nanostructures. Weinheim: Wiley-VCH.				
Lu, G. Q., & Zh	ao, X. S. (2006). Nanoporous materials: Science and engineering. London: Imperial				
College Pr	ress.				
Marder, M. P. (20	015). Condensed matter physics. New York: John Wiley and Sons.				
OHandley, R. C.	(2000). Modern magnetic materials: Principles and applications. New York: Wiley.				
Verdeyen, J. T. (2	2003). Laser electronics. Taipei: Pearson Education Taiwan.				
Wise, D. L., Wne	ek, G. E., & Trantolo, D. J. (1998). Electrical and optical polymer systems:				
Fundame	entals, methods and applications. New York: Dekker.				
Zhou, B., Herma	ans, S., & Somorjai, G. A. (2004). Nanotechnology in catalysis. New York: Springer.				
Web References	i de la constante de				
https://nptel.ac.in	/downloads/115106076/				
https://nptel.ac.in	n/syllabus/syllabus_pdf/115106076.pdf				
nptel.ac.in/syllab	pus/syllabus_pdf/115104044.pdf				
https://nptel.ac.in	n/courses/115106076/14				
Outcomes	Knowledge on Nanoengineering.				
	Basic knowledge on historical perspectives of nanoengineering.				
	> One can specialize in electronics, materials chemistry, bioengineering, and				
	photonics.				
	 Ideas on different type of nano technology. 				
<u>.</u>					

Name of the Course Teacher **Dr. P. Shakkthivel, Professor.**

		Semester-III Major ElectiveCourse			
Course code: 5	33503	Microsystem Technology	Credits:4	Hours: 4	
Objectives		duction to MEMS and Microsystems technology.			
		oelectronic-fabrication processes.			
		ography techniques.			
		Nanomaterials for sensor application.			
		Overview of Lab-on-chip technology/ biomedical and chemical sensors, specific cases.			
Unit - I	Proces	Process Method: -Processing of substrate materials-Thin film deposition methods:			
	-	Physical Vapour Deposition (Sputtering, evaporation, MBE, PLD etc), Chemical methods			
	(CVD,	(CVD, MOCVD, CSD, Sol-gel), Fabrication-Patterning approaches-Thin film sensors,			
	Pattern	transfer-rapid prototyping and micro ECM and EDM.			
Unit - II	Fabric	ration Process: - Silicon fabrication processes. Silicon r	nicromachini	ng (wet), Dr	
	etching	technologies for metals, semiconductors and insulators	, Microsyster	ns fabricatio	
	technic	lues.			
Unit - III	Lithog	raphy: - Silicon MEMS fabrication technology, Advan	ced lithograp	hy (e-beam	
	lithogr	aphy, radiation for imaging (UV,X-rays, syncl	nrotron, ma	sking issues),	
	Lithog	raphically induced self-construction (LISC), Nano impr	int lithograph	y.	
Unit - IV	Sensor	s: - Packaging of MEMS devices by anodic/fusion bond	ding, Pressure	e sensors and	
	packag	ing, MEMS performance and evaluation.Bionanosensor	devices- cor	nmunicable	
		and biological threat detection.			
Unit - V	Indust	ries Application : - Non-silicon MEMS and related	l fabrication	techniques- Si	
	carbide MEMS- Biomedical MEMS Micro-stereolithography- Integration of microsystems				
	with el	ectronics including RF MEMS and the exploitation of M	/licrosystems		
References:	I				
	4). <i>MEN</i>	IS mechanical sensors. Boston: Artech House.			
• •	,	S FOR ELECTRONICS. (2019). S.I.: CRC PRESS.			
		ng micro- and nanotechnologies. (2002). Washington, D	O.C.: National	Acad. Press.	
	Meisami, E., & Timiras, P. S. (1988). Handbook of human growth and developmental biology. Boca				
Raton, I	Raton, FL: CRC Press.				
Pierson, H. O.	(1999).	Handbook of chemical vapor deposition (CVD): Princip	les, technolo	gy, and	
applica	tions. No	prwich, NY: Noyes Publ.			
Pileni, M. P. (2	2005). <i>N</i>	anocrystals forming mesoscopic structures. Chichester:	John Wiley d	listributor.	
,	,	erials & process integration for MEMS:. Boston: Kluwe	-		
Web Reference	,				
https://epgp.infl	ibnet.ac.	in/ahl.php?csrno=6			
		in/ahl.php?csrno=831			
		edu/~phys534/notes/week07 lectures.pdf			
•		.in/research/mems-and-nems-sensors			
•		gu/Teaching/documents/Lecture04-24-13.pdf			
Outcomes					
		Methods for the fabrication through lithography techniq	ues.		
		Principles of Sensors functionalisation and assembling.			
		Bio nanomachines.			
	1				

Name of the Course Teacher **Dr. K. Gurunathan,** Professor & Head

	Semester -III		
Course code:	Nanoscience and Technology- lab III	Credits: 4	Hours:8
533307	(Nano-biotechnology Experiments)		
Objectives	> Teach students safe and good laboratory practice to be	followed in r	nicrobiology
	biochemistry and nanotechnology lab.		
	> Demonstrate proficiency and use of the following in	the laborato	ry: microbia
	isolation from environmental samples, proper cu	lture handlir	ng, handlin
	microscopes, bacterial staining techniques, preservation	of microbial c	ultures.
	> Develop the skills in green synthesis of nanopa	rticles and	assessing it
	antimicrobial activity		-
	> Provide a solid training in the area of nanotechnology	that is at the	e interface o
	biology, chemistry, pharmaceutical sciences and medicir		
	 Understand the fundamentals of nano-bioconjugation tech 		
1. Preparati	on of buffers and pH measurement	I	
-	les for isolation of pure bacterial culture. Preservation and main	ntenance of m	icrobial
cultures.	*		
3. Bacterial	characterization by staining techniques and biochemical tests.	Measuremen	t of growth -
Growth o			0
	and quantification of DNA and Protein from microbial source		
	l synthesis of nanoparticles from bacteria and fungi – Metal (A	(g, Pd), metal	oxide (CuO
TiO ₂ , Fe			
6. Synthesis	s of nanoparticles using herbal plants – ZnO, MgO.		
•	les for nanoparticle separation – Centrifugation, Sedimentation	1	
8. Assessm	ent of antimicrobial activity of synthesized nanoparticles.		
9. Immobil	zation of synthesised nanoparticles		
10. Evaluatin	g the bioremediation activity of immobilized nanoparticles		
11. Assessm	ent of toxic effect of nanomaterials under <i>in vitro</i> conditions.		
Reference and T	extbooks:- (APA format		
	.d.). Microbiology A Laboratory Manual(Eleventh ed.). Benja	min Cummin _i	gs.
	olecular Cloning - A laboratory manual., Cold Spring Harbor	-	
	ergey's Manual of Determinative Bacteriology. Lippincott Wi		
, ,	2). Laboratory Manual in General Microbiology. Panima.		
). Analytical techniques in Biochemistry and Molecular Biolog	y. Springer N	ew York.
). Analytical techniques in Biochemistry and Molecular Biolog		
	4). A Laboratory Course in Nanoscience and Nanotechnology.		
	(15). Bio-Nanoparticles: Biosynthesis and Sustainable Biotech		lications,.
Wiley-Bla		0 T	,
Web links refer			
	rita.edu/?sub=3&brch=73		
Outcomes	 Acquire basic knowledge on practical techniques and approved 	oroaches com	monly used
	in biotechnology linked to nanotechnology.		<i>j</i>
	 Understand the biogenic route for the synthesis of nanopa 	articles and a	nly it in the

\triangleright	Understand the biogenic route for the synthesis of nanoparticles and apply it in the
	field of biological research.

Gain knowledge on basic molecular biology techniques.

Name of the Course Teacher

Semester – IV Major Elective Course Course code: Nanotoxicology Credits: 4 Hours : 4				
533508	i (unotoricology		liouisti	
Objectives	To impart knowledge on diverse dimensions of nanomaterials and its interaction with			
	environment.			
	> To develop understating of unique properties of nanomaterials which helps to study the			
	interaction of engineered nanomaterials with biological system.			
	> To create awareness regarding the toxic effect of nanomaterials to human health.			
	\succ To emphasize the ethical agenda to be followed in nanotec			
	To afford knowledge on the preventive and remedial me nanotoxicology.	asures to over	come	
Unit - I	Introduction: - Nanopollution – Natural source, anthropogenic source, Environmental			
	and occupational exposure, Aerosol- Physicochemical charac	teristics of nar	nomaterials.	
Unit - II	Mechanism of cellular interaction: - Interactions of Nanoparticles with Cells and their			
	Cellular Nanotoxicology – Cellular uptake, Reactive oxyger	-	ated toxicity	
	Oxidative stress, inflammation, genotoxicity and Immunotox			
Unit - III	Human exposure to Nanosized Materials: - Nanoparticle membrane-Entry routes into the human body, Disposition tract, Studies of neuronal translocation of UFPs from respir and translocation,Translocation to the circulatory and lymph NSPs in the liver, spleen and kidney, Exposure via GI Tract a nanoparticles in the eye.	of NSPs in th atory tract, Ne atic system, Tr	he respirator uronal uptake anslocation o	
Unit - IV	Assessment of nanotoxicity: - Toxicity assessment- Laboratory rodent			
	studies, Ecotoxicologic studies, Methodology for Nanotox vivotoxicity testing.		•	
Unit - V	Risk Assessment and Execution: - Portals of entry and targ	et tissue. Risk	assessment –	
cint v	Ethical, Legal and Social Implications, Development of Test Protocols for			
	Nanomaterials – Regulation of Engineered Nanomaterials in			
Books for Stud		1		
	, 4). Nanotoxicology: Materials, Methodologies, and Assessmen	ts. Springer, No	ewyork.	
,	ase Studies in Nanotoxicology and Particle Toxicology. Acade	· •	·	
Kumar, V. (201	8). Nanotoxicology: Toxicity Evaluation, Risk Assessment and	Management.	CRC press.	
Monteiro-Rivie	re, 6. (2014). Nanotoxicology: Progress towards Nanomedicin	e. CRC Press,	Taylor and	
Franscis.				
Njuguna, J. (20	14). Health and Environmental Safety of Nanomaterials: Polyn	ner Nancompo	sites and	
other material of	containing nanoparticles,. Woodhead Publishing, Elsevier, UK			
Otsuki,, T. (201	6). Biological Effects of Fibrous and Particulate Substances.	Springer, Japan	l .	
	G. (2011). Assessing Nanoparticle Risks to Human Health. El	sevier, USA.		
, ,	Inhalation Toxicology., CRC Press, London.			
•	14). Biointeractions of Nanomaterials. CRC press.			
Weblink refer				
	co.nptel.ac.in/102107058/lec20.pdf			
1 // 11	deshare.net/rijuchandran/nanotoxicology			

Outcomes	> Analyze in depth about the toxic effect of nanoparticles and its adverse effect to	
	the environment	
	Comprehend the challenges and risk involved in nanotechnology	
	Relate properties of nanomaterials with their transport, uptake, reactivity and	
	toxicity in human system and environment	
	➢ Gain knowledge about various prevention methods and remedial measure to	
	overcome the toxicity induced by the nanoparticles	

Name of the Course Teacher **Dr. N. Suganthy, Assistant Professor**

		Semester – I			
Course code:		Thin Film Technologies and Characteristics	Credits: 4	Hours:4	
533501					
Obje	\triangleright				
ctives	the knowledge to film formation				
	\triangleright	To demonstrate how simulation can facilitate learning of fab.	rication proce	ess and	
	device designing.To teach scientific principles behind thin film technology.				
Unit - I	T	nin Film Technology: - Role of Thin films and Nanostruc	ctures in Tec	hnology and	
	D	evices; Vacuum evaporation-Hertz- Knudsen equation, evapo	oration from	a source an	
	fil	m thickness uniformity. Glow discharge and plasmas-Plasn	na structure,	DC, RF and	
	m	crowave excitation; Sputtering processes-Mechanism and spu	ttering yield,	Sputtering o	
		oys; Reactive sputtering.			
Unit - II		ucleation and Growth: - Nucleation and Growth: Adsorption,	Surface diffu	usion, model	
		r 3D and 2D nucleation, coalescence and depletion, grain str			
		d its dependence on deposition parameters. Role of energy en			
	Se	If-assembly: mechanisms and controls for nanostructures of 0	and 1 dimens	sion.	
Unit - III	D	eposition Technology: - Adsorption, Surface diffusion, Nu	cleation, Su	rface energy	
	Τe	exturing, Structure Development, Interfaces, Stress, Adhesi	on, Tempera	ture Control	
	ag	glomeration, aggregation, Semiconductor devices, Growth	Monitoring,	Composition	
	C	ontrol, Lattice Mismatch Surface Morphology.	-	-	
Unit - IV	E	Ditaxial Technology : - Epitaxy: Structural aspects of epitaxy,	homo- and he	etero-epitaxy	
	lattice misfit and imperfections; epitaxy of compound semiconductor, theories of epitaxy,				
		ble of interfacial layer, Artificial semiconductors, Band-gap		- ·	
	stı	uctures; Strained layer epitaxy, Gas Supply, Safety, Flow	control, Co	ontamination	
		onvection, Reaction, and Diffusion-PVD-CVD-LPE-VPE-MPI			
		indamentals).		[×]	
Unit - V	C	haracteristics of Thin Films: - Mechanical, Electrical, Magne	tic and Optic	al Properties	
	of	Thin Film, Analysis of thin films -Interface phenomena- Mult	tilayer films.		
Reference and	d T	extbooks:-			
Bunshah, R. F	. (2	001). Handbook of hard coatings: Deposition technologies pro	perties and a	pplications.	
Estados Unido	s: N	Joyes Publications.			
Callister, W.	D.,	& Rethwisch, D. G. (2018). Materials science and engineering	g: An introdu	ction.	
Hoboken, NJ:	Wi	ley.			
Chopra, K. L.	(19	085). Thin film phenomena. Malabar, FL: R.E. Krieger.			
Frey, H. (201	5). 1	Handbook of Thin-Film technology. Berlin: Springer.			
Ohring, M. (20	006). The materials science of thin films. San Diego, Calif: Acader	nic Press.		
Pandalai, S. C	Э. (2	2003). Recent research developments in vacuum science & tech	nology. Triv	andrum:	
Transworld re	sear	ch network.			
Seshan, K. (2	012). Handbook of thin film deposition: Techniques, processes, an	d technologi	es.	
Amsterdam: E	lsev	vier.			
web reference					
		net.ac.in/ahl.php?csrno=831			
•		g/tags/thinfilms			
https://nanohu	b.01	g/resources/26056			

https://nanohub.c	org/resources/11949
Outcomes	> To familiarize them with the principles, equipment, use, and limitations of different
	deposition techniques.
	> To give students an overview of the phenomena and concepts involved in thin film.
	To gain knowledge of the various process techniques to synthesis
	Nanostructured materials.
	To understand the factors controlling growth of the nanomaterials.

Name of the Course Teacher Dr. K. Gurunathan, Professor & Head

	Semester – I		
Course code: 533502	condensed matter Physics	Credits: 4	Hours: 4
Unit - I	Crystalline Matter: - Atoms in crystals – types of lattices-Cu - Atomic planes –reciprocal lattice- Brillouin zones-structure types.	-	
Unit - II	Properties: - Lattice vibration in crystals – Mono atomic and – Optical properties in IR – Phonons – Electrical properti theory – Fermi energy – Brillouin zones – Semiconductor – Model – Effective mass – Impurity levels – Hall effect – Fern semi conductor.	es of metals – Band theory-	Free electron Kronig Penny
Unit - III	Dielectrics and Ferroelectrics: - Depolarisation field E1, Constant and Polarisability – Clausius – Mosotti relation Ferroelectric crystals, Classification of ferroelectric crystals, s theory of phase transition, second order transition.	– Electronic	polarisability,
Unit - IV	Magnetism: - Quantum theory of paramagnetism – Ferromag domains – Ferro and Anti-ferro magnetic materials - spin way materials.	·	C
Unit - V	Superconductivity: - Meissner effect – Type I & II super con Thermodynamic properties – BCS theory - Super conducting Josephson effect – SQUID – High temperature super conduct	tunneling – DC	•
Kittel, C., & M Phillips, P. (20 Pillai, S. O. (2) Age Internatio Robertson, C.	d V. (1986). Introduction to solids. Bombay: Tata McGraw-Hil IcEuen, P. (2018). Introduction to solid state physics. Hoboker 115). Advanced solid state physics. Westview Press 018). Solid state physics. London, UK: New Academic Science	n, NJ: Wiley. e, an imprint of	New

Course Teacher: Prof. K. Gurunathan/Dr. G. Ramalingam

Course code:	Introduction to Nano Scale in Science and Technology	Credits: 2	Hours: 3	
533703			1001000	
Unit - I	Scientific Revolutions: - Types of Nanomachines and Nano	technology-Pe	riodic table-	
	Atomic structure molecules and phase energy-Molecular an	•••		
	dimensional space-Top down and bottom up.			
Unit - II	Chemical bonding: - Forces between atoms and molecule	particles and gr	ain boundarie	
	surfaces-Strong inter molecular forces-Electrostatic and V	ander Waals f	orces betwee	
	surfaces-Similarities and differences between intermolecu	lar and inter p	article forces	
	covalent and coulomb interactions-Basic principles of Nano	Scale material	s, Synthesis,	
	processing, Mechanical grainding, wet chemical synthesis- Sol-gel processing.			
Unit - III	Band structure: - Opportunity at the nano scale-length and	time scale in s	tructures-	
	energy landscapes-Inter dynamic aspects of inter molecular forces-Evolution of band			
	structure and Fermi surface.			
Unit - IV	Quantum scale and biological membranes: - Quantum dots - Nano wires - Nano tube			
	2D and 3D films Nano and mesopores, miscelles bilayers, vesides-binano machines-			
	biological membranes.			
Unit - V	Properties: - Influence of nano structuring on Mechanical,	optical, electro	onic, magneti	
	and chemical properties-Grain size effects on strength of metals optical properties or			
	quantum dots and quantum wires-electronic transport in quantum wires and carbon nane			
	tubes-magnetic behavior of single domain particles and nanostructures -surface			
	chemistry of tailored monolayer-self assembling.			
Book for study				
•	(2009). Fundamentals of nanotechnology. Boca Raton: CRC			
	04). Fundamental properties of nanostructured materials: Nat	U U		
	nsed Matter Group, Rimini, Italy, September 20-25, 1993. Sing			
	. (2007). Handbook of nanoscience, engineering, and technology	ogy. Boca Rato	n, FL: CRC	
Press.				
	Owens, F. J. (2010). Introduction to nanotechnology. New De	•		
	& Ratner, D. (2008). Nanotechnology: a gentle introduction t	o the next big i	dea. Upper	
	River, NJ: Prentice Hall Professional Technical Reference.			
Timp, G. (1998). Nanotechnology. New York: AIP Press.			

Course code:	Nanotechnology and Advanced Drug Delivery System	Credits:2	Hours :	
533704				
Unit - I	Basic concepts of Nano-science and technology: Property		•	
	advantages of Nanomaterials - Quantum wire, Quantum well, Qua			
	nanotubes : Synthesis – Top down and bottom up approaches; Char	racterization	-	
	Spectroscopic techniques and Microscopic observations.			
Unit - II	Fundamentals and types of Nanocarriers: Types - Viral na		•	
	nanocarrier, lipid nanocarrier, carbon nanostructures, dendrimer		*	
	Microbes and antibody based nanocarriers; Physicochemical properties -			
	Magnetic and Optical Properties	1 (2.5)		
Unit - III	Nanotechnology for Drug Targeting: - Drug targeting - Ta			
	Micropumps, microvalves, Implantable microchips), non-targete			
	drug release; Nanoparticle surface modification – bioconjugation,			
	cell- surface targeting; nanostructures for use as antibiotics, disease	ed tissue des	truction	
	using nanoparticles, drug encapsulation strategies.			
Unit - IV	Nanotechnology for Imaging and Detection: - Fluorophores	-		
	Labeling and functionalization, Image analysis, Imaging facilitating			
	Nanoparticles for bioanalytical applications - Biosensors - Di			
	biosensors – materials for biosensor applications- fabrication of bio			
	Use of nanoparticles for MRI, X Ray, Ultrasonography Drug Deliv	-		
Unit - V	Nanomedicine: - Nanotechnology in Cancer Therapy - Passive			
	Strategies in Cancer with a Focus on Nanotechnology Applic			
	Nanoparticles for Cancer Therapy - Neutron Capture Therapy of		-	
	and High Molecular Weight Boron Delivery Agents; Nanoneurolo	gy – Nanoc	ardiology	
	Nano-Orthopedics - Nano-Ophthalmology.			
Reference and				
	Modo, M. M. (2016). Design and Applications of Nanoparticles in B	Riomedical In	naging.	
	r. doi:10.1007/978-3-319-42169-8			
	17). <i>The Handbook of Nanomedicine</i> (Third ed.). Humana Press.			
	rivastava, R. (2016). Nanomedicine for Cancer Therapy: From Chen	*		
• •	hermia-Based Therapy. Springer International Publishing. doi:10.100	07/978-3-319	9-45826-7	
	& Ali, M. A. (2017). Nanomaterials for Biosensors (1 st ed.). Elsevier.			
Mishra, V., Ko	esharwani, P., Amin, M., & Iyer, A. (2017). Nanotechnology-Based A	Approaches f	for	
•	ing and Delivery of Drugs and Genes. Academic Press.			
Mohapatra, S.	, Ranjan, S., Dasgupta, N., & Mishra, R. (2019). Nanocarriers for dri	ug delivery,		
	cience and Nanotechnology in drug delivery. Amsterdam: Elseiver.			
	& Nikoleli, G. (2018). Nanotechnology and Biosensors. Amsterdam:			
Shah, M. M., In	nran, M., & Ullah, S. (2017). <i>Delivery and Diagnosis (1st ed.)</i> . Willia	ım Andrew.		
Slevin. (2012).	Current Advances in the Medical Application of Nanotechnology (1 st	ed.).Manch	ester:	
Bentha	m Press. doi:10.2174/97816080513111120101			
Tuan, V. D. (2	2015). Nanotechnology in biology and medicine methods, devices and	l Application	s(Second	
	an Fransico: CRC press.			
		·		
	& Balakrishna, K. (2012). Nanotechnology: An Introduction to Synthe	esis, Properti	ies and	

Weblink re	eferences
1.	http://www.nanomedicinecenter.com
2.	https://nptel.ac.in/courses/118107015/module4/lecture7/lecture7.pdf
3.	https://nptel.ac.in/courses/102107058/
4.	https://nptel.ac.in/courses/118106019/Module%209/Lecture%203/Lecture%203.pdf
5.	http://www.imm.org/Reports/rep048.pdf.
Outcomes	Comprehend the principles behind nanomedicine
	 Gain a broad understanding of concepts and applications of nanomedicine
	Impart the knowledge to apply these nano-drug delivery systems for the diagnosis and
	therapy
	Understand the concepts of nanomedicine to a focused clinical area of their choice.

Name of the Course Teacher

Dr. N. Suganthy, Assistant Professor.

Dr. K. Gurunathan

Professor & Head, Special Officer (Projects) Department of Nanoscience & Technology Science Campus, Alagappa University Karaikudi - 630 003 Tamil Nadu, INDIA Email: kgnathan27@rediffmail.com

Academic Qualifications:

Ph.D (Chemistry-Energy) Highly Commended, 1994, University of Madras, Chennai

M.Sc (Chemistry), 74 %, 1986, Madurai Kamaraj University, Madurai

B.Sc (Chemistry), 79%, 1984, Madurai Kamaraj University, Madurai

Previous Post: Scientist & Program Coordinator, C-MET, Pune

.Teaching Experience: 14 Years

Research Experience: 31 Years

Additional Responsibilities

- 1. Member of Syndicate, Finance Committee (2016-19)
- 2. Member of Senate, Member of Standing Committee
- 3. Member of IQAC
- 4. Member of University & Dept. Admission committee
- 5. Member of University & Dept. Purchase committee

Research Interest: Photocatalysis, Hydrogen Energy, Nanosensor, Nano- Solar Cells, Conducting polymer Nanocomposites for Renewable energy.

Distinctive Achievements / Awards

- 1. BOYSCAST (DST, New Delhi) for the year 1999-2000. The work was carried out in University of Texas at Austin, Austin, TX, USA during March 2000-March 2001 in Lithium battery, Supercapacitor and cathode materials for Solid oxide fuel cell.
- 2. Brain Pool scientist by Brain Pool program of KOFTS, South Korea, during July 2005-June 2006 in " Development of Efficient Visible photocatalysts for Hydrogen Generation" The work was carried out in Korea Research Institute of Chemical technology (KRICT), Daejon, S. Korea.
- 3. Awardee of "Rastriya Nirman Rattan" by Economic Growth Society of India, Delhi awarded during the National seminar on "Individual achievements for Economic & Social Development" on 26th August, 2012 at Delhi.
- 4. Fellow, Academy of Sciences, Chennai, 2018

Cumulative Impact Factor (as per JCR) : 251 h-index 11 i10 index 14 **Total Citations: 1281** Ph.D Guidance : Awarded 4; Ongoing -4 No. of Research Publications in Intl. Journals: 80 No. conference attended/ presented 225 **Guest/Invited lecture delivered** 60 Life Fellow in Professional Society : 4 (SAEST, MRSI, ISCA, ASC) **Membership in Professional Society** 13

Publication (Listed Few)

- 1. Interactive Studies on Synthetic Nanopolymer decorated with Edible Biopolymer and its Selective Electrochemical determination of L-Tyrosine" Scientific Reports- Springer Nature 2019(Accepted)
- Biodiesel production from Ulva linza, Ulva tubulosa, Ulva fasciata, Ulva rigida, Ulva reticulate by using Mn2ZnO4 heterogenous nanocatalysts, Fuel <u>https://doi.org/10.1016/j.fuel.2019.115744</u>
- CuO-ZnO p-n junction enhanced oxygen sensing property of polypyrrole nanocomposite at room temperature, Journal of Materials Science: Materials in Electronics, J. Materials Science: Materials in Electronics (2019) 30:9989-9998
- 4. A.J. Heiner, K. Gurunathan, Fabrication of Room Temperature LPG Gas sensor based on Pani CNT V2O5 hybrid nanocomposite, Appl. Nanosci. https://doi.org/10.1007/s13204-019-00967-w
- 5. Effective harvesting of UV induced production of excitons from Fe3O4 with proficient rGO-PTh acting as Bifunctional redox photocatalyst, Renewable energy, doi.org/10.1016/j.renene. 2017.09.031

Brief Profile

Prof. Dr. M. Ashokkumar			
Professor & Deputy Head of School School of Chemistry,	Publication <u>Citations</u>	9536	P
The University of Melbourne,	(As on Sep.2019)	2000	10
VIC 3010, Australia	h-index	54	
Email: <u>masho@unimelb.edu.au</u>			
	<u>i10-index</u>	234	

Professor Muthupandian

Ashokkumar (Ashok) is a

Physical Chemist who specializes in Sonochemistry, teaches undergraduate and postgraduate Chemistry and is a senior academic staff member of the School of Chemistry, University of Melbourne. He is also one of the Associate Deans (International) in the Faculty of Science. Ashok is a renowned sonochemist who has developed a number of novel techniques to characterize acoustic cavitation bubbles and has made major contributions of applied sonochemistry to the Materials, Food and Dairy industry. He has received about \$ 15 million research grants to support his research work that includes several industry projects. He has edited/co-edited several books and special issues for journals; published ~320 refereed papers in high impact international journals and books; and delivered over 150 invited/keynote/plenary conferences and lectures at international academic institutions. Ashok has successfully organised 10national/international scientific conferences/workshops and managed a number of national and international competitive research grants.

Education and training

- PhD, University of Madras 1989
- MSc, Madurai-Kamaraj University 1984
- BSc, Madurai-Kamaraj University 1982
 Awards and honors
- Ian Potter Foundation, 1997
- Grimwade Prize in Industrial Chemistry.
- ➢ He is a Fellow of the RACI since 2007.
- > Royal Australian Chemical Institute. Member since 2004.
- European Society for Sonochemistry. Member 2000

Most cited publications (Listed few)

- 1. The use of ultrasonics for nanoemulsion preparation Published in <u>Innovative Food Science & Emerging</u> <u>Technologies</u> in <u>April, 2008, doi.org</u>/10.1016/ J.IFSET.2007.07.005.
- 2. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate, Published in Ultrasonics Sonochemistry in September, 2011, doi.org/10.1016/J.ULTSONCH.2010.12.016.
- 3. The characterization of acoustic cavitation bubbles An overview Published in <u>Ultrasonics</u> <u>Sonochemistry</u> in <u>July</u>, 2011, doi.org/10.1016/J.ULTSONCH. 2010.11.016
- 4. An overview on semiconductor particulate systems for photoproduction of hydrogen Published in <u>International</u> Journal of Hydrogen Energy in June, 1998, doi.org/10.1016/S0360-3199(97)00103-1.

<u>Profile</u>	Publication <u>Citations</u>	6829
Prof. G. Annadurai	(As on Sep.2019)	
Dept. of Environmental Biotechnology		
Sri Paramakalyani Centre for Excellence in	<u>h-index</u>	40
MANONMANIAM SUNDARANAR		
Alwarkurichi – 627412, Tamilnadu, INDIA,	<u>i10-index</u>	96
E-mail: gannadurai@msuniv.ac.in		
EDUCATIONAL QUALIFICATION:		

Environmental Sciences, UNIVERSITY,

EDUCATIONAL QUALIFICATION.				
Degree	Board/University	Year of Passing	Subject	
B.Sc.,	Madurai Kamaraj University,	1990	Chemistry Ancillary:	
	PosuponMuthuramalingaThever		Maths, Physics.	
	College, Department of chemistry,			
	Usilampatty.			
M.Sc.,	Anna University, Department of	1992	Applied Chemistry	
	Chemistry. Chennai.			
Ph.D.,	Anna University, Department of	1997	Adsorption, Nanoscience	
	Chemical Engineering. Chennai.		and Nanotechnology	

PRIZES / HONORS / FELLOWSHIP AWARDED (Listed few)

- 1. Tamil Nadu Scientist Award (TANSA 2009)
- 2. "Who's Who in the world" (2007)
- 3. Researcher" (NSC-2007 National Science council). Graduate Institute of Environmental Engineering, National Central University-**Taiwan**, National Institute of Advanced Industrial Science and Technology-JAPAN.etc
- 4. "JSPS- Researcher Fellowship" (JSPS-2002 Japan society for the promotion of science). National Institute of Advanced Industrial Science and Technology -JAPAN.

CONFERENCE ORGANISED (Listed few)

- 1. Organizing Secretary National conference on 'Nanotechnology: Current Approaches and Applications' on Feb 5-6, 2010 Manonmaniam Sundaranar University
- Organizing Secretary National conference on 'Nanotechnology: Applications and its Advantages in Natural Science', Feb 4-5, 2011
- 3. Organizing Secretary- National workshop on Environmental Pollution and Assessment' Jan 10-1, 2017
- 4. Organizing Secretary- National Conference on 'Climate change ang mitigation', Feb 14-15, 2017 etc..

TEACHING AND RESEARCH EXPERIENCE:

20 YEARS, Ph.D Awarded – 12: Ph.D Ongoing –7: M.Phil Research Guidance and awarded: 5: B.Sc and M.Sc Research Guidance and awarded: 66 M.Sc Research Guidance – on going 5

RESEARCH PROJECTS (Listed Few)

- 1. Nano-porous adsorbent produced from fruits peel waste by using decolorization studies-UGC-Rs.5,62,300
- 2. Centre for Excellence In Tamil Nadu Higher Education , Chennai (Co Coordinator)-2009-2012; Rs-100,00,000
- 3. Non SAP (Co Coordinator) UGC, New Delhi 2012-2013, Rs 10,00,000
- 4. MSc., Nanoscience UGC Innovative Programme

(Coordinator), UGC, New Delhi, 2013-2018, Rs-58,000,00etc

Profile Dr. S Ravichandran Principal Scientist CSIR-CECRI	Publication <u>Citations</u> (As on Sep.2019)	1295	
Karaikudi-India	<u>h-index</u>	16	
Email:sravi@cecri.res.in	i10-index	29	

Area of Research

Materials Electrochemistry Energy storage and conversion devices

Electrochemical water treatment

Current Projects

 Design and development of electrodes and electrolytes for water electrolysis to generate Hydrogen and hydrogen peroxide for sustainable energy and public hygiene - XII five year plan by Solar Energy to Chemical Energy Conversion - TAP SUN - CSIR.

Latest publication

- Morphology-Dependent Photoelectrochemical and Photocatalytic Performance of γ-<u>Bi2O3 Nanostructures</u>B Jansi Rani, ES Babu, M Praveenkumar, S Ravichandran, G Ravi, ...Journal of nanoscience and nanotechnology 20 (1), 143-154
- 2. <u>BiVO4 Nanostructures for Photoelectrochemical (PEC) Solar Water</u> <u>SplittingApplications</u>BJ Rani, M Praveenkumar, S Ravichandran, G Ravi, RK Guduru, ...Journal of nanoscience and nanotechnology 19 (11), 7427-7435
- <u>Components of the diffuse ultraviolet radiation at high latitudes</u>, MS Akshaya, J Murthy, S Ravichandran, RC Henry, J Overduin, Monthly Notices of the Royal Astronomical Society 489 (1), 1120-1126
- 4. <u>Electrochemical surface modification of carbon for enhanced water_electrolysis</u>SS Zance, S Ravichandran, Applied Physics A 125 (7), 456
- 5. <u>WO3 nanocubes for photoelectrochemical water-splitting applications</u>, BJ Rani, MP Kumar, S Ravichandran, G Ravi, V Ganesh, RK Guduru, ...Journal of Physics and Chemistry of Solids
- <u>Ultrafine M-doped TiO2 (M= Fe, Ce, La) nanospherephotoanodes for</u> <u>photoelectrochemical water-splitting applications</u>, BJ Rani, M Praveenkumar, S Ravichandran, V Ganesh, RK Guduru, ...Materials Characterization 152, 188-203

Dr. P. Shakkthivel

Professor, Department of Nanoscience and Technology

Science Campus, Alagappa University,

Karaikudi -630 002.

E-mail: apsakthivel@yahoo.com

Academic Qualifications:

Years of Experience

Teaching: 12 years, Research: 20 years

Administrative Experience:

- i) Controller of Examination- Alagappa University, Karaikudi, INDIA 21.12.2017 -2/10/2018
- ii) Chief Warden Alagappa University Hostels, Karaikudi, Jan. 2016-Dec.2017

M.Sc., Ph.D., - Earned in Electrochemistry from Alagappa University, India (2001).

Awards/ Fellowships Received

- 1. Visiting Professor Ming Chi University of Technology, Taiwan, 2018
- 2. Dongguk University Foreign Professor Fellow- 2015
- 3. Brain Korea 21 fellowship 2007
- 4. Taiwan National Science Council Post Doc.fellowship-2006.
- 5. Marquis Who's Who in the World- name placed in 2009 & 2017 issues.

Area of Research Interest:

Li-ion Batteries, Magnetic Nanoparticles & Targeted drug Delivery

Modified electrodes & Bio-molecule diagnosis

Membership in Professional Bodies: 5 No.s

Guidance Rendered: Ph.D – 5 Awarded, 4-Ongoing

Extension Activities/ Invited Lectures: 25 National and International

Books / Chapter written

Book Title: Biocompatible Nanomaterials Synthesis, Characterization and Applications; **Chapter title:** Synthesis, characterization and Application of Biocompatible Magnetic Nanoparticles, Page 171-208, Nova Science Publisher Inc., Newyork.

No. of Research Publications in Intl. Journals : 61

No. conference attended/ presented	85
Guest/Invited lecture delivered	56

Dr. C. Balalakshmi

Assistant Professor Department of Nanoscience and Technology

Alagappa University

Karaikudi – 630 003 Tamil Nadu, INDIA

Academic Qualification: M.Sc., M.Phil., Ph.D.

B.Sc., Zoology 2000 Madurai Kamaraj University

M.Sc., Oceanography 2002 Alagappa University

M.Phil,Oceanography 2003 Alagappa University

- Ph.D, Oceanography 2012 Alagappa University
- Teaching Experience:06 years

Research Experience: 09 Years

Additional Responsibilities(Listed few)

Deputy Warden for Science Campus Womens hostel Alagappa University

Department Co-ordinator for National Service Scheme Programme Alagappa University

Treasurer, Department of Oceanography and Coastal Area Studies, Alumni Association

Member, Department Board of Studies, Alagappa University

M.Phil-Nano Science & Technology-Class incharge Alagappa University

Distinctive Achievements / Awards: (Listed few)

Worked as a project fellow in the sethusamudram ship channel project (DCI)

Events organized in leading roles(Listed few)

Parents Teachers Association organizing secretary in 2016 (Nano science & Technology) Organizing Member: Nanomaterials for Specialized Applications NMSA-2017 during Feb.9& 10, 2017.

Training Programs attended (Listed few)

- 1. Workshop on Molecular and Immunology Techniques attended at Life Tech Research center, vadapalani ,Chennai. (25-28 December 2004)
- cience of Living, Academy of Human excellence (DST) Training programme attended at vadodara (GUJARAT) (9th-13th January 2017)

Recent Publications(Listed few)

- 1. New records of Pen Shells (Bivalvia, Pinnidae) from seagrass beds of palk Bay area in Tamilnadu –Seaweed Res.Utiln,32(1&2):185-188,2010 2.
- 2. New Distribution of Siratus Virgineus ponderosus (Sowerby, 1879)Family Muricidae, in Mandapam Coast, India ,World Journal of Zoology 6 (4):331-333,2011 3.
- 3. Using Sem Studies on the Radular Morphology of Chicoreus Species (Gastropods:Muricidae) collected from Palk Bay in Tamilnadu-Ecology and Fisheries, Vol.4(2):73-78,2011 4.
- 4. Four New Distributional Records of Bivalves species of Pectinidae family from Mandapam area –South-East Coast of India-proc.ICBAT.pp.17-20,2011.

<u> Brief- Bio-Data</u>

Dr. G. Ramalingam

Assistant Professor

Department of Nanoscience and Technology

Quantum Materials Research Lab (QMRL)

Alagappa University-Karaikudi

Email:ramanloyola@gmail.com

Academic Qualifications:

Degree

Name of University/Institute

M.Sc(Physics)University of Madras/Loyola CollegeB.Ed(Physical Science)University of MadrasM.Phil(Physics)University of Madras/Loyola CollegePh.D(Physics)University of Madras/Loyola College

Teaching and Research Experience: 7- Years 6 Months

National Institute of Technology (NIT), Calicut-Kerala, Central University of Tamil Nadu (CUTN), Thiruvarur. Sathyabama University, Chennai.

Ph.D Guidance: On-going-1

Achievements / Awards(Listed few)

- 1. Award of **Young Scientist** Fellowship from Tamailnadu State Science and Technology (Government of Tamilnadu) TNSCST.
- 2. Innovative Scientific Research Technologist & **Dedicated Academician** (Nanoscience &Tech.) award by globalawards-Malaysia
- 3. Best Research paper award at IIT-Madras (ISRS 2010)

Developing e-content:

- 1. Sol-gel synthesis of nanopartilces 11,6,287 Views at slider share
- 2. Hydrothermal/Solvothermal synthesis of Nanopartilces, 7942 Views at slider share.
- 3. Introduction to Nanoscience -1612 Views at slider share

Number of Invited / Special Lectures delivered: 06 Country

visited: Malaysia, Singapore

Publication details

Number of paper published	18
Number of citation	67
Research gate score	:20.41
Vidwan score-Inflibnet :8.1 or	ut of 10

Dr. N. Suganthy

Assistant Professor

Contact Address :Department of Nanoscience and Technology, Alagappa University, Karaikudi – 630 003, Tamil Nadu, INDIA

Contact Phone (Mobile)	:	+91-9790252506	
Contact e-mail(s)	: <u>suganthy.n@gmail.com;</u>		
suganthyn@alagappauniversity.ac.in	<u>1</u>		
Academic Qualification	:	M.Sc, M.Phil, Ph.D	
Research Experience	:	14 yrs	
Area of Research	: Nan	opharmocology, Nanotoixology, Nanobiotechnology	
Publications			
Cumulative Impact Factor	:	58	
h-index	:	13	
i10 index	:	14	
Total Citations	:	552	
Research Supervision/Guidance : Ph.D Guiding 2			
Total Publications : In Journals : 26, Conferences-35, Books Chapter-5			
Distinctive Achievements/Awards			
4. Dr. D.S. Kothari Post Doctoral fellow, UGC, Govt. Of India (2014-2017).			
5. State Eligibility Test (SET) for Lectureship Government of Tamil Nadu, India.			
6. CSIR SRF (Direct), New Delhi, India (2011-2013).			
7. Jawaharlal Nehru Fellowship f	for doctora	al studies, New Delhi, India (2008-2010).	
Abroad visit	:	Thailand	
Membership	:	Life Member in Indian Science Congress	
		Life Member in Society of Biological Chemist	

