

DEPARTMENT OF ENERGY SCIENCE

M.Sc., ENERGY SCIENCE [Choice Based Credit System (CBCS)]

[For the candidates admitted from the academic year 2019-2020]

CONTENTS

I. Name of the Programme II. Programme General Objectives III. Eligibility for Admission IV. Duration of the Programme V. Courses in the Programme VI. Project VII.Semesters VIII. Credits IX. Teaching Methodologies X. Examinations XI. Condonation XII.Question Paper Pattern XIII. Evaluation XIV. Passing Minimum XV. Grading XVI. Conferment of the Master's Degree XVII. Ranking: University Rank Examination XVIII. Grievance Redressal Committee XIX. Transfer of Credits XX. Revision of Regulations and Curriculum XXI. Commencement of this regulation XXII. Transitory Provision

REGULATIONS AND SYLLABUS

[For the candidates admitted from the academic year 2019 onwards]

I. NAME OF THE PROGRAMME

The programme is named as **M.Sc. Energy Science (CBCS)**. The syllabus for this programme is framed under the rules of the Choice Based Credit Semester System of this University and both Core and Elective courses were incorporated as its components. The CBCS enables the students to select variety of subjects as per their interest and requirement. Acquiring knowledge in the related fields is advantageous to the students. Fast learners can earn more credits than the stipulated minimum of 90 credits.

II. PROGRAMME GENERAL OBJECTIVES

All basic life forms on Earth depend greatly on Energy for their survival, including us. Energy is a big part of our everyday life. We find energy is necessary for day to day life from lighting, cooking, transport, etc. Without energy it would be extremely hard for us to live. We need energy for everything we do.

Energy Science is a pervasive subject. It is an experimental science and students need to train in practicals to get expertise in doing fine experiments and handle sophisticated instruments. Along with the data obtained its statistical analysis is also required to establish authenticity in the fields like environmental science, space chemistry and biotechnology. There are immense potentialities for Energy Science and post graduates to undertake advanced research or in Industries as skilled professionals. It is important for the educators to provide a platform for the student community to study in detail the basics and advancements in Energy Science. Hence our goal in floating the M.Sc., programme in Energy Science is to educate the undergraduate students of chemistry, physics, electronic and material science in the fascinating fields of Energy in an effective manner. This syllabus presents essential contents in a detailed, clear and direct way.

PROGRAMME SPECIFIC OBJECTIVES

The specific objectives of M.Sc., in Energy Science programme are:

- To provide, thorough well designed studies of theoretical and experimental knowledge, a worthwhile educational experience for all students
- To acquire deep knowledge in fundamental aspects of all branches of Sciences related to Energy Science
- To acquire basic knowledge in the specialized thrust areas like Solar Energy, Hydrogen Energy, Nuclear Energy, Wind energy and Nanoscience and Technology etc.
- To develop abilities and skills that:
 - > are relevant to the study and practice of science
 - ➤ are useful in everyday life
 - > are encouraging efficient and safe practice and effective communication
- To develop attitudes relevant to science such as:
 - Concern for accuracy and precision
 - > Objectivity
 - ➤ Integrity
 - ➢ Enquiry
 - Initiative and
 - Inventiveness

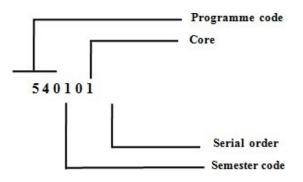
PROGRAMME OUTCOMES

Upon completion of M.Sc. Energy Science programme students should be able to:

- Apply knowledge obtained in Energy Science lecture to problem solving and critical thinking in the laboratory.
- Utilize mathematical knowledge gained from general Energy Science to perform common calculations, including mass balance, limiting reagent, and percentyield.
- Engage in safe laboratory practices by handling laboratory glassware, equipment, and chemical reagents appropriately, using general guidelines and basic knowledge about the common hazards associated with them in an Energy Science practical laboratory.
- Maintain an appropriate scientific notebook using notational and descriptive content containing information on relevant chemical reagents, experimental procedure followed, data collected, and observations made during the experimental process.
- Assemble glassware and perform the following techniques as a part of synthetic procedures: aqueous workup, distillation, reflux, separation, isolation, and crystallization.
- Predict the outcome of several common materials synthesis through a basic understanding of starting materials, mechanism, typical reaction conditions and applications.
- Characterize prepared substances by advanced characterization techniques.
- Develop the skill set necessary to continue the higher studies (Ph.D.) in Energy Science.
- Can confidently attend and clear competitive examinations especially CSIR NET.
- Become teachers in educational institutes and scientist in research laboratories.

III. ELIGIBILITY FOR ADMISSION

A candidate who is a B.Sc. graduate of this University or any recognized University in the main subject/subjects as given below or who has passed an examination accepted by the Syndicate as equivalent there to is eligible for admission to M.Sc. Energy Science programme.


M.Sc. in Energy Science : B.Sc., Degree in Chemistry, Physics, Biology, Applied Physics, Electronics, Nuclear Physics, Biophysics, Industrial Chemistry, Polymer Chemistry, Applied Chemistry, Biotechnology, Biochemistry and Biological Sciences (Botany, Zoology and Microbiology) or equivalent Degree with at least 55% of marks in Part III. The admission is subject to the prevailing rules and regulations for PG admission of this University. The candidate has to undergo this programme in the Department of Energy Science, Alagappa University and complete all the examinations prescribed under the four semesters to qualify for this degree.

IV. DURATION OF THE PROGRAMME

The programme is for a period of two years. Each year shall consist of two semesters viz. Odd and Even semesters. Odd semesters shall be from July to November and even semesters shall be from December to April. There shall be 90 working days which shall comprise 540 teaching clock hours for each semester (exclusive of the days for the conduct of University end semester examination).

V. COURSES IN THE PROGRAMME

M.Sc., in Energy Science programme consists of number of courses. The term 'course' is applied to indicate a logical part of the subject matter of the programme and invariably equivalent to the subject matter of a "paper" in the conventional sense.

For elective, the fourth digit is '5'. For Supportive course, the fourth digit is '7'

		calt Structure for M.Sc. EM		ben			
Sem	Course	Course Title	Credi	Hrs	CIA	ESE	Total
Sem	Code		t		Marks	Marks	Marks
	540101	Basic Energy Sciences	5	5	25	75	100
	540102	Physics for Energy Sciences	5	5	25	75	100
	540103	Chemistry for Energy Sciences	5	5	25	75	100
Ι	540107	Energy Practical-I	4	8	25	75	100
	54050 X	Elective –I	4	4	25	75	100
		Library, Seminar, Yoga	-	3	-	-	-
		Total	23	30	125	375	500
	540201	Environmental Science	5	5	25	75	100
	540202	Photovoltaics	5	5	25	75	100
	540203	Energy Storage Systems	5	5	25	75	100
Π	540207	Energy Practical-II	4	8	25	75	100
	54050X	Elective –II	4	4	25	75	100
		*NME I	2	3	25	75	100
	*SLC-I	MOOCs	E.C	-	-	-	-
		Total	25 + E.C	30	150	450	600
	540301	Hydrogen Energy Systems	5	5	25	75	100
-	540302	Wind and Hydro Energy	5	5	25	75	100
-	540303	Solar Thermal Energy	5	5	25	75	100
ш	540307	Energy Practical-III	4	8	25	75	100
	54050X	Elective –III	4	4	25	75	100
-		*NME II	2	3	25	75	100
-	*SLC-II	MOOCs	E.C	-	-	-	-
		Total	25 + E.C	30	150	450	600
	540401	Energy Audit and Management	5	5	25	75	100
IV	54050X	Elective –IV	4	4	25	75	100
	540999	Project Work -Report & Viva-voce	8	16	25	75	100
I	Libra	ary, Yoga, Seminar, Carrier Guidance	-	5	-	-	-
		Total	17	30	75	225	300
		GRAND TOTAL	90 + E.C	120	500	1500	2000

Credit Structure for M.Sc. ENERGY SCIENCE

CC- Core Course, EC- Elective Course, NME- Non-Major Elective, SLC- Self Learning Course (MOOCs),

E.C- Extra Credit, **CIA** – Continues Internal Assessment, **ESE** – End Semester Examination. *Credits earned through Self Learning Courses (MOOCs) shall be transferred in the credit plan of the programme as extra credits.

	ELECTIVE COURSES				
Course Code	Course Title				
540501	Biochemistry for Energy Sciences				
540502	Advanced Nanomaterials and Their Applications				
540503	Nuclear Energy				
540504	Advanced Instrumental Methods of Analysis				
540505	Biofuels				
540506	Polymer Science and Technology				
540507	Climate Change and CO ₂ Emission Assessment				

ELECTIVE COURSES

NON-MAJOR ELECTIVE COURSES FOR OTHER DEPARTMENTS

Sl. No.	Course Title	Credit	CIA Marks	ESE Marks	Total Marks
1.	Basic concepts in Energy Sciences	2	25	75	100
2.	Renewable Energy and Energy Storage Systems	2	25	75	100
3.	Energy Conversion and Conservation Techniques	2	25	75	100

*Depending upon the requirement, any one of the above courses will be floated in a semester.

VI. PROJECT

Each candidate shall be required to take up a Project Work and submit the report at the end of the second year. The Head of the Department shall assign the Guide who in turn will suggest the Project Work to the student in the beginning of the second year. One typed copy of the Project Report shall be submitted to the University through Head of the Department on or before the date fixed by the University.

The project report will be evaluated by an Internal Examiner and an External, nominated by the University. The candidate concerned will have to defend his project in a Viva-Voce examination. **VII. SEMESTERS**

An Academic year is divided into two **semesters.** In each semester, courses are offered in 18 teaching weeks including the duration of conduct of internal examination. Each week has 30 working hours spread over 5 days a week.

VIII. CREDITS

The term "Credit" refers to the weightage given to a course, usually in relation to the instructional hours assigned to it. For instance, a four hour course is assigned four credits, three hour course is assigned three credits. However, in no instance the credits of a course can be greater that the hours allotted it. The total minimum credits, required for completing a PG programme is 90. The details of credits for individual components are given in Table 1.

S.No.	Study Components	Number of Courses	Credit per Courses	Total Credits	Hours per Courses	Total hours	Total marks
1.	Core Courses - Theory	10	5	50	90	900	1000
2.	Core Courses - Practicals	3	4	12	144	432	300
3.	Project work (Core)	1	8	8	216	216	100
4.	Elective Courses	4	4	16	72	288	400
5.	Non Major Elective	2	2	4	54	108	200
	Total	20		90	-	1944	2000

Table 1. Details on the number of courses and credits per course

Total working hours = 1944 + 120 (Library, Seminar, Yoga, Carrier guidance.) = 2064 hours

IX. TEACHING METHODOLOGIES

The classroom teaching would be through conventional lectures and use of Power Point presentations and smart classroom facilities. The lecture would be such that the student should participate actively in the discussion. Student seminars would be conducted and scientific discussions would be arranged to improve their communicative skill.

In the laboratory, instruction would be given for the experiments followed by demonstration and finally the students have to do the experiments individually.

Periodic tests would be conducted and for the students of slow learners would be given special attention.

X. EXAMINATIONS

- i) There shall be examinations at the end of each semester, for odd semesters in the month of October/November; for even semesters in April/May.
- ii) A candidate who does not pass the examination in any course(s) may be permitted to appear in such failed course(s) in the subsequent examinations to be held in October/November or April/May. However candidates who have arrears in Practical shall be permitted to take their arrear practical examination only along with regular practical examination in the respective semester.
- iii) A candidate should get registered for the first semester examination. If registration is not possible owing to shortage of attendance beyond condonation limit/regulation prescribed or belated joining or on medical grounds, the candidates are permitted to move to the next semester. Such candidates shall re-do the missed semester after completion of the course.
- iv) Viva-Voce: Each candidate shall be required to appear for Viva-Voce Examination (in defending the Project only).
- v) For the Project Report, the maximum marks will be 150 for project report evaluation and for the Viva-voce it is 50. At the end of fourth semester viva-voce will be conducted on the basis of the Dissertation/Project report submitted by the student. HOD and external examiner will conduct the viva-voce jointly in the presence of Guide.
- vi) The results of all the examination will be published through the University Department where the student underwent the programme as well as through University Website.
- vii) Practical examination for M.Sc. Energy Science programme shall be conducted at the end of each semester.

XI. CONDONATION

Student must have earned 75% of attendance in each course for appearing for the examination. Students who have earned 74% to 70% of attendance to be applied for condonation in the prescribed form with prescribed fee. Students who have earned 69% to 60% of attendance are to apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students who have attended below 60% are not eligible to appear for the examination and they shall re-do the semester after completion of the programme, with the prior permission of the Registrar of the University.

XII. QUESTION PAPER PATTERN

Time: 3 Hours

(For all theory courses)

Max. Marks: 75

PART-A: 10x2=20

(Answer all questions) (Two questions from each unit)

Q.No. 1 – 10

PART-B: 5x5=25 (Answer all questions) (One question from each unit with internal choice) 11. a) or b) 12. a) or b) 13. a) or b) 14. a) or b) 15. a) or b) **PART-C: 3x10=30** (Answer any three questions) (One question from each unit) Q.No. 16 - 20

XIII. EVALUATION

The performance of a student in each course is evaluated in terms of percentage of marks with a provision for conversion to grade points. Evaluation for each course shall be done by continuous internal assessment by the concerned Course Teacher as well as by an end semester examination and will be consolidated at the end of the course. The components for continuous internal assessment are: Two tests - 15marks (Third /repeat tests for genuine candidates/absentees) Seminar/Quiz - 05 marks

Assignment

- 05 marks
 - <u>05 marks</u>
 25 marks

Attendance need not be taken as a component for continuous assessment, although the student should put in a minimum of 75% attendance in each course. In addition to continuous evaluation component, the end semester examination, which will be a written examination of at least 3 hours duration, would also form an integral component of the evaluation. The ratio of marks to be allotted to continuous internal assessment and to end semester examination is 25:75. The evaluation of laboratory component, wherever applicable, will also be based on continuous internal assessment for 25 marks and on end-semester practical examination 75 marks.

Distribution of marks for practical examinations

(CIA marks 25 + ESE Marks 75 marks)

ESE mark distribution	
Quantitative/ Qualitative analysis	50 marks
Viva – Voce in practical	15 marks
Record Note	10 marks
Total	75 marks

Project Work (PW)

Project report evaluation	75 marks
Viva-Voce examination	25 marks
Total	100 marks

(a) Topic:

The topic of the dissertation shall be assigned to the candidate before the end of first semester and a copy of the same should be submitted to the HOD. (b) Plan of Work:

The student should prepare plan of work for the dissertation well in advance and get the approval of the guide during the first week of third semester of their study. In case the student wants to avail the facility or to carryout part of the work from other University/Research Institute/Laboratories in Industry, they can undertake the work with the permission of the guide and HOD and acknowledge the alien facilities/co-supervisor. The duration of the dissertation research shall be a minimum of three months in the fourth semester. In case the student stays away for work from the Department for more than one month, specific approval of the HOD should be obtained.

(c) No. of copies/distribution of dissertation:

The students should prepare four copies of dissertation and submit the same for the evaluation by Examiners. After evaluation one copy is to be retained in the Department library and one copy is to be submitted to the University, one copy can be given to the guide and one copy can be held by the student.

(f) Format to be followed:

The format/certificate for dissertation to be submitted by the students is given below: Format for the preparation of project work:

(a) Title page

(b) Bonafide Certificate

(c) Acknowledgement

(d) Table of contents

CONTENTS

CHAPTER NO.	TITLE	PAGE NO.
1.	Introduction	
2	Review of Literature and Scope	
3.	Materials and Methods / Experimental	
4.	Results and Discussion	
5.	Summary	
6.	References	

Format of the Title Page:

TITLE OF THE DISSERTATION				
Dissertation Submitted in part fulfillment of the requirement for the Degree of Master of Science in				
Energy Science (CBCS) to the Alagappa University, Karaikudi.				
Ву				
Students Name:				
Register Number:				
Under the Guidance of				
(Faculty Name)				
University Emblem				
Department of Energy Science				
Alagappa University				
(Accredited with A+ Grade by NAAC (CGPA: 3.64) in the Third Cycle				
and Graded as Category-I University by MHRD-UGC)				
Karaikudi - 630003				
Month and Year:				

Format of the Certificate:

CERTIFICATE

Date: Place:

Signature of the Guide

XIV. PASSING MINIMUM

A candidate shall be declared to have passed in each course if he/she secures not less than 50% marks in the University ESE and not less than 50% in the aggregate, taking continuous assessment and University Examination marks together.

Candidates, who have secured the pass marks in the end-semester examination (ESE) but failed to secure the aggregate minimum pass mark (50%) are permitted to improve their CIA mark in the following semester and/or in University examinations.

A candidate shall be declared to have passed in the Project work if he/she gets not less than 50% in each of the Project Report and Viva-voce but not less that 50% in the aggregate of both the marks for Project Report and Viva-voce.

A candidate who gets less than 50% in the Project Report must resubmit the Project Report. Such candidates need take again the Viva-Voce on the resubmitted Project.

Improvement of marks – Norms for the Improvement marks

- a) Candidates willing to improve his/her performance of marks in the University Examination (other than Practical /Project work) in Theory course shall be permitted to re-appear again in the succeeding semester examination for the theory course(s) in which he/she has passed in the first appearance.
- b) Improvement of performance of marks is allowed only once of a (theory course) course.
- c) If the candidate shows no improvement in such appearance, marks secured by him/her in the first appearance will remain. No fresh marks statement will be issued in such cases.
- d) If the candidate shows improvement, a revised mark statement will be issued on production of the original mark statement issued to him/her.
- e) On improvement of performance, if a candidate becomes eligible for a higher class/ GPA and CGPA it shall be incorporated/awarded in the mark statement/provisional certificate/degree certificate on an application made by the candidate (along with the original Mark Statemen/Provisional Certificate/Degree Certificate) already issued (as the case may be) together with a fee prescribed for the purpose. However, he/she is not eligible for Revision of Rank of for the award of Prize.
- f) Candidates willing to appear for the examination for improvement of marks at his/her last semester examination may await for the result of his/her latest appearance and re-appear twice in the immediately succeeding examination session.
- g) The fee for permission to re-appear for improvement of marks is to be paid in addition to the examination fee for each course for which he/she is appearingfor.
- h) The application for permission of re-appearance must be sent separately to the Controller of Examination in the prescribed form duly recommended by the HOD of the College on or before the last date for receipt of application for registration.
- i) Fees paid once by these candidates will not be refunded or adjusted under any circumstances.

XV. GRADING

Once the marks of the CIA and end-semester examination for each of the courses are available, they will be added. The marks, thus obtained will then be graded as per the scheme provided in Table 2.

Marks	Grade Point	Letter Grade
96 and above	10	S+
91 - 95	9.5	S
86 - 90	9.0	D++
81 - 85	8.5	D+
76 - 80	8.0	D
71 – 75	7.5	A++
66 - 70	7.0	A+
61 - 65	6.5	А
56 - 60	6.0	В
50 - 55	5.5	С
Below 50	0	F

Table 2	Grading	of the	Courses
---------	---------	--------	---------

Grading System

< 50 Marks in all	50 < Your Marks < 60	60 < Your Marks < 75	Your Marks ≥ 75
Fail	II Class	I Class	Distinction

From the second semester onwards the total performance within a semester continuous performance starting from the first semester is indicated respectively **Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA).** These two are calculated by the following formulae.

$$\Sigma Ci Gi$$

$$i = 1$$

$$GPA = ------$$

$$n$$

$$\Sigma Ci$$

$$i = 1$$

Where 'Ci' is the Credit earned for the course i in any semester; 'Gi' is the Grade Point obtained by the student for the course i and 'n' is the number of courses **passed** in that semester.

CGPA (Cumulative Grade Point Average) = Average Grade Point of all the Courses starting from the first semester to the current semester.

XVI. CONFERMENT OF THE MASTER'S DEGREE

A candidate shall be eligible for the conferment of the Degree only after he/she has earned the minimum required credits for the programme prescribed therefore (i,e. 90 credits).

XVII. RANKING: UNIVERSITY RANK EXAMINATION

Candidates who pass all the examinations prescribed for the programme in the first instance and within a period two academic years from the year of admission to the programme only are eligible for University Ranking.

- A candidate is deemed to have secured first rank provided he/she
- (i) should have passed all the papers in first attempt itself
- (ii) should have secured the highest over all grade point average (CGPA)

Rank certificate will be issued for a programme as follows:

- a) Only THREE ranks if the students strength is below 20.
- b) Only FIVE ranks if the student strength is above 20 but below 50.
- c) Only TEN ranks if the student strength is above 50 but below 100

XVIII. GRIEVANCE REDRESSAL COMMITTEE

The Department shall form a Grievance Redressal Committee for each course with the course Teacher and the HOD as the members. This committee shall solve all grievances relating to the internal Assessment marks of the students.

XIX. TRANSFER OF CREDITS

Students are permitted to transfer their programme credits from Directorate of Distance Education (DDE) of Alagappa University to Regular Stream and Vice-versa, if the PG degree programme is same.

XX. REVISION OF REGULATIONS AND CURRICULUM

The University may from time to time revise, amend and change the regulation and the curriculum, if found necessary.

XXI. COMMENCEMENT OF THIS REGULATION

These regulations shall take effect from the academic year 2019-2020 i.e., for students who are to be admitted to the first year of the programme during the academic year 2019-2020 and thereafter.

XXII. TRANSITORY PROVISION

Candidates who were admitted to the M.Sc. Energy Science programme of study from or after 2019-2020 shall be permitted to appear for the examinations under the above regulations for a period of four years. Thereafter, they will be permitted to appear for the examination only under the regulations then in force.

Assessment & Evaluation: Student evaluation is based on exams, assignments, Seminar/Quizzes and class participation. The grade allocation is as follows:

Continuous Internal Assess	End-Semester Exam: 75 Marks	
Two, 2 hour tests for 15 marks in all	Assignments, Seminars for 10 Marks	Three Hour examination on the whole syllabus for 75 Marks.

Attendance: Attendance and participation are vital to the student's success in this course. Students are expected to attend class every day. Minimum attendance to be eligible to take end-semester-examination is 75%.

Punctuality: Punctuality is an essential element in achieving success. Therefore, anyone arriving after daily roll-call (about 5 minutes after the class begins) will be marked absent. A valid excuse for being absent from class shall be a medical or a personal emergency acceptable at the discretion of the Dean/Chairman/Head of the Dept.

Class Participation: Class participation and interaction helps to form a complete educational experience. However, class participation and interaction is to be relevant to course content and context. Deviant behavior may lead to dismissal or suspension

Submission of Assignments: When submitting any assignments, your name, your student identification number, course number and date of submission should be clearly written on every page and all pages should be stapled together. The timely submission of assignments is an essence of personal discipline and will contribute towards forming a person's professional responsibility. The soft copy of the assignment also submitted to the Faculty in charge.

Preparedness: Students are expected to have read and be able to discuss the assigned chapter before attending the lecture. In addition, students should be prepared to discuss homework problems.

Academic Dishonesty: Academic work produced using dishonest methods has no value. Academic dishonesty also includes copying - verbatim or otherwise, and plagiarism i.e., the use of an author's ideas, statements, or approaches without crediting the source. A clear indication of academic dishonesty will result in a grade of "F" being assigned to that particular piece of work.

Subject to change clause: This syllabus, the course schedule and reading assignments are subject to change at the discretion of the Professor to accommodate instructional and/or student needs.

-000-

Semester - I Hours per Course Code: 540101 Course Name: Basic Energy Sciences Credits: 5 week : 5 To study the contemporary topics in energy resources, conventional and non- \triangleright conventional energy resources and energy needs. \triangleright To understand solar energy conversion, solar concentrator and other solar applications, solar photovoltaic, fabrication and types of solar cells. Objectives \triangleright To knowledgeable on wind energy conversion, wind farms in India, advantages and disadvantages of wind energy conversions. \triangleright To study about biomass energy, biofuels like biodiesel, bioethanol and biogas. To acquire more knowledge about geothermal energy and tidal power plant. \triangleright **Energy Resources** (18 Hrs) Introduction to energy resources: Conventional and Non-conventional energy Unit – I resources- Difference between conventional and non-conventional energy resources -Types of conventional and Non-conventional energy resources - Energy needs: Who needs what, where and how much - Overview of global/ India's energy scenario. Solar Energy (18 Hrs) Solar radiation: measurements and prediction - India's solar energy potential and challenges Photovoltaic effect - Solar thermal energy conversions systems: Flat plate Unit – II collectors - Solar concentrators and applications. Solar Photovoltaic: Principle of photovoltaic conversion of solar energy - Types of solar cells and fabrication - Organic Solar cells, Dye Sensitized Solar Cells - Perovskite solar cell. Wind Energy (18 Hrs) Introduction: Electricity from thin air- Criteria for selecting site for a wind farm-Unit – III Technology of wind energy conversion - Storage of wind energy - Developments of wind farms - Location of the wind farms in India - Government policy- Advantages and disadvantages of wind energy - Applications. Bioenergy (18 Hrs) Biomass as energy resources: Origins and use of biomass - India's bio-energy potential and challenges- Classification and estimation of biomass - Source and Unit – IV characteristics of Biofuels - Biodiesel - Bioethanol - Biogas - Types of biomass energy conversion systems waste to energy conversions. Geothermal and Tidal energy (18 Hrs) Introduction: Classifications and energy extractions - Advantages and disadvantages of geothermal energy over other energy forms - Geothermal energy in India: Unit-V Prospects- Applications of Geothermal energy. Tidal energy: Introduction - Main types - Tidal power plant - Advantages and limitations of tidal power generation. **Reference and Textbooks:** Almora, O., & Garcia-Belmonte, G. (2019). Light capacitances in silicon and perovskite solar cells. Solar Energy, 189, 103-110. Doi: 10.1016/j.solener.2019.07.048. Babu, V., Thapliyal, A., & Patel, G. K. (2014). Biofuels production. John Wiley & Sons. Bhatia, S. C. (2014). Advanced renewable energy systems, (Part 2). WPI Publishing. Calio, L., Kazim, S., Grätzel, M., & Ahmad, S. (2016). Hole-transport materials for perovskite solar cells. Angewandte Chemie International Edition, 55(47), 14522-14545. Doi: 10.1002/anie.201601757. Everett, R., Boyle, G., Peake, S., & Ramage, J. (2012). Energy systems and sustainability: Power for a sustainable future. Oxford University Press. Gikonyo, B. (Ed.). (2014). Advances in biofuel production: algae and aquatic plants. CRC Press. Kothari, D. P. (2014). Wind Energy-Renewable Energy Sources and Emerging Technologies. Phi

CORE COURSES

Learning Pvt. Ltd, New Delhi,.

Lee, S., & Shah, Y. T. (2012). Biofuels and bioenergy: processes and technologies. CRC Press.

Math, M.C. (2019). Non-Conventional Energy Sources. Yes Dee.

Rai, G.D. (1998). Non-Conventional Energy Source. Khanna Publishers.

Reddy, P. J. (2012). Solar Power Generation: Technology, New Concepts & Policy. CRC Press.

- Rivkin, D. A., Toomey, K., & Silk, L. (2013). *Wind Turbine Technology and Design*. Jones & Bartlett Publishers.
- Rosen, M. A., & Koohi-Fayegh, S. (2017). *Geothermal energy: Sustainable heating and cooling using the ground*. John Wiley & Sons.

Sukhatme, S. P., & Nayak, J. K. (2017). Solar energy. McGraw-Hill Education.

Tony, B. (2001). Wind energy handbook. Wiley Publishers.

Twidell, J., & Weir, T. (2015). Renewable energy resources. Routledge.

Vargas, S. A., Esteves, G. R. T., Maçaira, P. M., Bastos, B. Q., Oliveira, F. L. C., & Souza, R. C.

(2019). Wind power generation: A review and a research agenda. Journal of Cleaner

Production.doi: 10.1016/j.jclepro.2019.02.015.

r	
Outcomes	 The students will be able to understand conventional and non-conventional energy resources. The students will able to acquire more knowledge about solar energy conversion, solar concentrator, solar energy applications, solar photovoltaic, fabrication and types of solar cells. The students will be able to gain knowledge about wind energy, advantages and disadvantages of wind energy conversions, The students gain more information about various biofuels, like biodiesel, bioethanol, biogas and biomass energy conversions. The students will be comprehended about the basics of tidal power plant, limitations of tidal power generation, geothermal energy and applications of geothermal energy.

Name of the Course Teacher: Dr. S. Karuppuchamy

	Semester -I				
Course Code: 540102	Course Name: Physics for Energy Sciences	Credits: 5	Hours per week : 5		
Objectives	 To understand work, kinetic energy, potential conservative forces. To study zeroth, first and second law of ther thermodynamic processes and energy transfer m To acquire more information about AC and D circuits, rectifiers and filters, band theory of s metals. To know more information about properties of n forces, nuclear models; natural radioactivity and 	rmodynamics, w lechanisms. C circuits; Kirc olids and free-e uclei, binding er	work and heat in hhoff's rules, RC electron theory of hergy and nuclear		
Unit – I	forces, nuclear models; natural radioactivity and nuclear reactions.Kinetic and Potential Energy(18 Hrs)Work and Kinetic Energy: Work done by a constant force - Work done by a varying force - Kinetic Energy and the Work-Kinetic Energy Theorem, Potential Energy: Conservative and Nonconservative Forces - Relationship between Conservative Forces and Potential Energy- Energy Diagrams and the Equilibrium of a System, Mass-Energy Equivalence, Quantization of Energy.				
Unit – II	Thermodynamics Thermometers and the Celsius Temperature thermometer and the Absolute Temperature Scale and Liquids - Macroscopic Description of an Idea Law of Thermodynamics - Heat and Internal Ene Heat - Latent Heat - Work and Heat in Thermod Thermodynamics - Some Applications of the First Is Transfer Mechanisms - Heat engines and second law	e - Thermal Exp al Gas- Zeroth, rgy - Heat Capa ynamic Process aw of Thermody	pansion of Solids First and Second acity and Specific les - First Law of mamics - Energy		
Unit – III	AC and DC Circuits Direct Current Circuits: Electromotive Force - Re Kirchhoff's Rules - RC Circuits - Electrical Instr Electrical Safety. Alternating Current Circuits: AC Sources and Phas Inductors in an AC Circuit - Capacitors in an AC Power in an AC Circuit - Resonance in a Series RLC Power Transmission - Rectifiers and Filters.	sistors in Series uments - House ors - Resistors i C Circuit - RLO	(18 Hrs) and in Parallel - ehold Wiring and n an AC Circuit - C Series Circuit -		
Unit – IV	Molecules and Solids Molecules and Solids: Molecular Bonds - Ene Bonding in Solids - Band Theory of Solids - F Electrical Conduction in Metals, Insulators and Ser Devices – Superconductivity- Meissner effect – BC	ree-Electron Th miconductors - S	eory of Metals - Semiconductor		
Unit – V	Nuclear Structure Nuclear Structure: Properties of Nuclei-Binding Nuclear Models – Shell model, Liquid drop I Processes - Natural Radioactivity - Nuclear Reaction Nuclear Fusion – Nuclear reactor, Breeder reactor-	Model - Radio ons – Nuclear F	activity - Decay ission and		
Reference and Chandra S (201	Textbooks: 10). <i>Physics of Atoms and Molecules</i> . Narosa.				
Chandra, S. (201 & Sons. Clark, E. (2002)	16). Energy, Entropy and Engines: An Introduction to	o Thermodynami	cs. John Wiley		
	010). Physics of Semiconductor Devices. PHI Learnin	ng.			
Nuclear Phys	, . .	ugust 16).	Retrieved from on.		

Perkins, D. H., & Press.	& Perkins, D. H. (2000). Introduction to high energy physics. Cambridge University
Schroeder, D.V.	(2011). An Introduction to Thermal Physics. Perason.
•	& Jewett, J. W. (2009). <i>Physics for Scientists and Engineers</i> : pt. 1. Mechanics. e Learning, UK.
	15). Renewable energy: Physics, engineering, environmental impacts, economics & g. Academic Press.
Sze, S.M. (2010). Physics of Semiconductor Devices. PHI Learning.
	3). Nanophysics and nanotechnology: An introduction to modern concepts in ence. Wiley.
Wong, S. S. M., Hall.	& Wong, S. S. (1996). Introductory nuclear physics (Vol. 129). New Jersey: Prentice
Outcomes	 The students gain more knowledge about work, kinetic energy and potential energy, conservative and non-conservative forces. The students will be able to understand action of heat over the solids and liquids; various laws of thermodynamics and energy transfer mechanisms. The students will be to understand, Kirchhoff's rules, AC and DC circuits, RC circuits, rectifiers and filters and free-electron theory of metals. The students will acquire more information about properties of nuclei, binding energy, nuclear forces and nuclear reactions, nuclear models and natural radioactivity.

Name of the Course Teacher: Dr. S. Karuppuchamy

	Semester -I		
Course Code: 54	103 Course Name: Chemistry for Energy Sciences	Credits: 5	Hours per week : 5
Objectives	 For understand acids and bases, Bronsted acids and nonelectrolytes, oxidation, reduction and displacer To knowledgeable on chemical bonding, electron sionic compounds, Lewis symbols, electronegativit To acquire intermolecular attractions, properties of dynamic equilibrium and principle of Le Chatelier To study the concept of thermodynamics, Gibbs fr and kinetics of chemical reaction. To acquire more information about electrochemistic electrolysis, standard reduction potential and application. 	ment reactions. sharing and form y and resonance f liquids, gas and 's theory. ree energy, entro try, industrial ap	tes and nation of l solids, ppy, enthalpy plications of
Unit – I	Chemical Reactions Chemical Reactions: Acids and Bases - Theories of Lowry Concepts for Acids and Bases - Periodic Tree the Oxides -Reactions of Metals with Acids - Dis another from Compounds. Chemical Reactions in Solution: Solutions and Chen and Nonelectrolytes - Acids and Bases as Electrolytes – Precipitation Reactions - Predicting Metathesis Rea Reactions - Balancing Redox Equations by the Io Concept.	acids and base nd - Acid-Base placement of C mical reactions - Acid-Base N actions - Oxidati	(18 Hrs) rs - Bronsted- Properties of One Metal by - Electrolytes eutralization on-Reduction
Unit – II	Chemical Bonding Chemical Bonding: Electron Transfer and the Form Lewis Symbols - Electron Sharing: Formation of Important Compounds of Carbon - Electronegativity Drawing Lewis Structures - Formal Charge and the S Resonance: Concepts of resonance-Coordinate Coval Bases.	of Covalent Bo and the Polari election of Lew	onds - Some ty of Bonds - is Structures -
Unit – III	Unit III: Properties of Liquids and Solids Intermolecular attractions - Properties of Liquids ar from Liquids and Solids - Intermolecular Attractions Liquids and Solids - Changes of State and Dynamic H of Liquids and Solids - Boiling Points of Liquids - End Changes of State - Dynamic Equilibrium and Le Chate	- Some General Equilibrium - Va ergy Changes d	Properties of por Pressures
Unit – IV	Thermodynamics and Chemical Kinetics Thermodynamics: Introduction - Energy Change Enthalpy Change and Spontaneity - Entropy and Spon of Thermodynamics – Gibbs Free Energy - Standard and Maximum Work - Free Energy and Equilibrium. Kinetics: Reaction rate -Factors that affect reaction r Reaction - Concentration and Rate - Concentration Reaction Rates - Measuring the Activation Energy - C Reaction Mechanisms - Catalysts.	es in Chemica ntaneous Chang Free Energies rates - Measurin and Time - T	e - Third Law - Free Energy g the Rate of heories about
Unit – V	Fundamentals of Electrochemistry Acid-Base Equilibria: Ionization of Water and the Strong Acids and Bases - Ionization Constants for Solutions of Salts: Ions as Weak Acids and Base Buffers- Types of Buffers - Acid-Base Titrations. Electrochemistry: Electricity and Chemical Change – Relationships in Electrolysis - Industrial Applicat Potentials and Reduction Potentials - Standard Reduct Concentration on Cell Potentials- Galvanic Cells - Pra	or Weak Acids s - Chemical Electrolysis - S tions of Electr ion Potentials -	and Bases - Equilibrium - Stoichiometric olysis - Cell Effect of

	Galvanic Cells.
Reference and T	
Ahluwalia, V.K. (2013). Green chemistry: A text book. Narosa.
Ajay Singh. (2013	3). Engineering chemistry. CBS.
Atkins, P. (2016).	Physical Chemistry. Oxford.
Carpenter, N. E. (2014). Chemistry of sustainable energy. CRC.
	ux, B. L., & Hutchison, J. E. (2007). <i>Toward greener nanosynthesis</i> . Chemical 7(6), 2228-2269. doi: 10.1021/cr050943k.
Darrell D. Ebbing	g. (2009). Fundamentals of chemistry. Cengage.
Das, A. K. (2016)	. Fundamental concepts of inorganic chemistry. CBS.
Douglas A. Skoog	g.(2011). Fundamental of analytical chemistry. Cengage.
Glasstone, S. (201	6). An Introduction to Electrochemistry. EMP.
Greenwood, N.N.	(1997). Chemistry of the elements. Elsevier.
Jayaprakash, R. (2	2011). Engineering chemistry-I. CBS.
John Kenkel. (201	5). Basic Chemistry Concepts and Exercises, CRC.
Lee, J.D. (2016).	Concise Inorganic Chemistry. Wiley.
	2019). Processing of Nanomaterials (NMs). <i>In Nanoelectronic Materials</i> , Springer, 309-353. doi:10.1007/978-3-030-21621-4_10.
Sodhi, G.S. (2013). Fundamental concepts of environmental chemistry. Narosa.
Outcomes	 The students will be able to understand the concepts of acid, base, Bronsted theory, oxidation, reduction and displacement reactions. The students gain more knowledge about chemical bonding, Lewis symbols, electronegativity and Lewis acids, bases. The students will be able to understand properties of solids, gas, liquids, dynamic equilibrium and principle of Le Chatelier's theory. The students gain more information about thermodynamics, chemical kinetics, collision theory and reaction mechanism. The students will be able to obtain more knowledge about fundamentals of electrochemistry and its real time applications.

Name of the Course Teacher: Dr. C. Karthikeyan

		Semester-I				
Cour	rse Code : 540107	Energy practical- I	Credit: 4	Hours per week : 8		
List of	Experiments:					
1.	Conductometry titra	tions- Acid-Alkali titration.				
2.	Conductometry-Det	ermination of dissociation of	constants of weak acids.			
3.	Potentiometric titrat	ions- Acid-Alkali titration.				
4.	Potentiometric titrat	ions-Redox titration.				
5.	Redox titrations: Fe	(II) vs. Ce (IV), Fe (II) vs. (dichromate.			
6.	Digital to Analog (I	D/A) converters (a) Ladder N	Network (b) Weighted r	esistor method.		
7.	Analog to digital (A	(D) converter				
8.	Logic gates using In	tegrated chip.				
9.						
10.	Synthesis of metal oxide nanoparticles by chemical method.					
11.	Synthesis of metal oxide nanoparticles by microwaveirradiation method.					
12.	12. Synthesis of metal oxide nanoparticles by sol-gel method.					
13.	Any other equivalen	13. Any other equivalent experiments.				

Name of the Course Teacher: Dr. S. Karuppuchamy, Dr. C. Karthikeyan, Dr. A. Nithya

			Semester -II			
Course Cod 540201	le:	Course Name:]	Environmental S	Science	Credits: 5	Hours per week : 5
Objectives		o understand b hosphorous and sul o know about vario reenhouse effect, c o acquire twelve ba enign technologies o understand more arbon footprint and	bus pollutions, oz limate change an asic principles of information about	one deplet d its contro green syn	ol methods. thesis and enviror	ing, nmentally
Unit – I	Air an Air Qu - Pho pollut rain - Water Tempo Anion	d Water vality and pollution sphorous and Sulp on and control me Green house effect Quality and pollu- erature – Turbidity s - SS – VOC – TE poliform - Potable w	: Biogeochemica hur - Classifica thods- Effects of - Climate change ution: Water Qu - Hardness – All OS – DO – BOD	tion of ai f air pollu - Global v aality para kalinity – j - COD - N	r pollutants - So tants: Ozone dep warming. meters – Colour pH – Conductivit Aicro nutrients - I	ources of air letion - Acid r – Odour – y – Cations - Heavy metals
Unit – II	Prima and fl filters	Treatment y Methods: Aer occulation- Disinfe Anaerobic digest ted carbon- Ultrafi	ection. Secondary	y methods nd ponds.	: Activated sludy Tertiary/Advance	ge- Trickling ed methods:
Unit – III	Green examp Preven - (v) S reaction Avoid Design (xii) D	Concepts of Green Chemistry: Definit iles - (i) Prevention ation / minimization election of appropri- ons - (vii) Selection ance of unnecessa ning biodegradable evelopment of anal- nices and for real tim	tion. Twelve Bas of waste / bypro n of hazardous pr riate auxiliary su on in the use o ary derivatization products - (xi) F lytical techniques	ducts - (ii) roducts - (i bstances - f renewat - (ix) U revention s to preven	Atom Economy v) Designing safe (vi) Energy required ble starting mate se of catalytic re of chemical acci	- (iii) er chemicals irements for rials - (viii) eagents - (x) dents and
Unit – IV	Desig Desig Bioca	ning Green Synthe ning Green Synthes alysts - Polymer su bles of green chemi	esis is: Choice of star apported catalysts	ting mater and solve	nts - Synthesis in	•
Unit – V	Susta Enviro synthe esters Micro Advar	nable and Eco-Fri onmentally benign t sis - Reactions on s saponification. Rea wave assisted react tages of green tech n footprint and Car	iendly Technologies: Sol solid supports - P actions without su ions in water - nologies - Carbo	gies vent free r hase transf apport or ca	nicrowave assiste fer catalysis - Sol atalyst - Example	vent free
	Textbo L. (2013		A text book. Nar			

Allouhi, A. (2019). Advances on solar thermal cogeneration processes based on thermoelectric devices: A review. Solar Energy Materials and Solar Cells, 200, 109954. doi: 10.1016/j.solmat.2019.109954. Arvind N. Shukla. (2013). Industrial bioprocess technology. DPH.

Bhatia, S.C. (2002). Environmental chemistry. CBS.

- Coronado, J. M., Fresno, F., Hernández-Alonso, M. D., & Portela, R. (Eds.). (2013). Design of advanced photocatalytic materials for energy and environmental applications (pp. 1-348). London: Springer.
- Ferreira, G. (Ed.). (2013). Alternative energies: updates on progress (Vol. 34). Springer Science & Business Media.
- He, J. (2016). Nanomaterials in energy and environmental applications. Pan Stanford.
- Kartite, J., & Cherkaoui, M. (2019). Study of the different structures of hybrid systems in renewable energies: A review. Energy Procedia, 157, 323-330. doi: 10.1016/j.egypro.2018.11.197.

Singh, M.P. (2010). Future energy sources. Pearl Books.

Sodhi, G.S. (2013). Fundamental concepts of environmental chemistry. Narosa.

Sorensen, B. (2015). Renewable Energy: Physics, Engineering, Environmental Impacts.

Economics & Planning, Academic Press.

	> The students will be gain noteworthy knowledge in various environmental
Outcomes	 cycles, The students will be gained more information about the sources, effect and control measures of air pollution, causes of ozone depletion and greenhouse effect.
	 The students will be acquiring more information about principles of green chemistry and environmentally benign technologies. The students will be able to know about carbon capture, carbon sequestration and carbon footprint.

Name of the Course Teacher: Dr. C. Karthikeyan

		Semester -II				
Course Code: 540		Course Name: Photovoltaics	Credits: 5	Hours per week : 5		
Objectives	 To know about remote area power systems, specific purpose photovoltaic systems, solar PV concentrators, concentrator photovoltaic materials and devices. To understand hybrid SPV power systems, SPV power plant design tools and methodologies and SPV economics. 					
Unit – I	Semic Comp and dr crystal reflect					
Unit – II	Device Fabrication and Characterization:(18 Hrs)Semiconductor junctions: Schottky barriers – MIS - P-N junction - p-i-n junction and its properties - Thin film technology - Physical vapour deposition (PVD) - Electro-deposition - Molecular beam epitaxy (MBE) - Metal organic chemical vapour deposition (MOCVD) - Plasma enhanced chemical vapour deposition (PECVD) - Organic and Nano tech solar cells - Characterization technique: I-V.					
Unit – III	Solar cell module materialsand assembly (18 Hrs) Introduction to PV modules: Identical and Non-identical Cells - Module Structuring and assembly - Environmental Protection - Thermal Considerations - Electrical Considerations and output conditioning - Assembly materials – Interconnects – Crystalline and thin film modules - Issues with solar PV modules – Module testing and analysis.					
Unit – IV	Introduction contro Photov	PV system components & system design uction to PV systems - System components: mo llers – Inverters – Batteries – Power conditionin cted power systems – Remote area power syster voltaic systems: Space – Marine – Telecommur eration.	ng and Regulations – Specific pu	on –Grid urpose		
Unit – V	Solar I	nced SPV technologies PV concentrators – Concentrator photovoltaic m ower systems – SPV power plant design tools a mics.		•		
Reference and Te Balfour, J. R., & S Publishers.		xs: 1. (2013). Introduction to photovoltaic system de	esign. Jones & I	Bartlett		
Photovoltaid Day, J., Senthilara	<i>cs</i> . ACS su, S., 6	 A., & Boyen, H. G. (2019). Fire Safety of Lead F. S Energy Letters, 4(4),873-878.Doi: 10.1021/acs & Mallick, T. K. (2019). Improving spectral mo w. Renewable energy, 132, 186-205. doi:10.101 	senergylett.9b00 <i>dification for ap</i>)546. oplications in		
Internationa	l Pu.	& Medina-Ramírez, I. (2015). <i>Photocatalytic se</i> S., Kumari, T., Kang, S. H., Cho, Y., & Yang,				
		Multiple Donor–Acceptor Pairs. Advanced Ma				

Doi: 10.100	02/adma.201804762.
Mukerjee, A.K. (2	2014). Photovoltaic systems: Analysis and design. PHI Learning.
Sawhney, G.S. (2	016). Non- Conventional energy resource. PHI Learning.
	5). Solar photovoltaic technology and systems: A manual for technicians, trainers ers. PHI Learning Pvt. Ltd.
Tiwari, G. N., & RSC Publis	Dubey, S. (2010). Fundamentals of Photovoltaic Modules and Their Applications. shing.
Walker, A. (2014 Sons.). Solar Energy: Technologies and project delivery for buildings. John Wiley &
Yariv,A.(2007).0	ptical electronics in modern communications. Oxford University Press, USA.
Outcomes	 The students will be able to understand semiconductors and types of semiconductor. The students will be acquire more information about anti-reflection principles and coatings, P-N junction, p-i-n junction and its properties The students gain more remarkable knowledge about solar cells, characterization technique, PV modules, identical and non-identical cells. The students gain more knowledge about remote area power systems, photovoltaic systems, solar PV concentrators, concentrator photovoltaic materials and devices. The students gain significant knowledge about hybrid SPV power systems, SPV power plant design tools, methodologies and SPV economics.

Name of the Course Teacher: Dr. S. Karuppuchamy

		Semester -II		
Course Code: 540	0203	Course Name: Energy Storage Systems	Credits: 5	Hours per week : 5
Objectives	 lea To fat To Itit To cat To 	understand electrochemical reactions, charge a d acid batteries, Lead acid battery for PV and a acquire advanced anodes and cathode materials orication technology and testing and batteries for study hybrid vehicles, solar photovoltaic applic nium sulphur and sodium sulphur battery learn fuel cell, precious and non-precious meta alysts and nanomaterials for low temperature f understand reversible fuel cells, fuel cell stacks hicles and grid connected applications.	utomotive applie s, theoretical cap or electric vehicle cations, sulphur l al catalysts, bi-fu- uel cells.	cations. acity, battery es. patteries, nctional
Unit – I	Lead Advar Physic proper metho acid ba	Acid Battery ttages and disadvantages of lead acid batteries cal and chemical properties of active mat ties of sulfuric acid - Constructional features ds - SLI (Automotive) batteries - charge and atteries – Sealed lead acid or maintenance free b	erials - Charac - Materials and p l discharge prop patteries fabricat	eteristics and manufacturing perties of lead ion
Unit – II	technology and testing - Lead acid battery for PV and automotive applications.Lithium-ion Battery(18 Hrs)Advanced anodes and cathodes – Theoretical capacity – Merits and demerits - Nanomaterials for anodes: Carbon nanotubes - $SnO_2 - NiO - TiO_2$ & LiTiO ₄ - Battery fabrication technology and testing - Batteries for electric vehicles - Hybrid vehicles and solar photovoltaic applications- Sulphur Batteries- Lithium Sulphur, Sodium Sulphur battery.			
Unit – III	Lithiu	-Air Batteries m-Air, Sodium-Air, Zinc-Air batteries: Principl des - Fabrication – Evaluation – Merits - Demer		
Unit – IV	GDL catalys Revers	Cells Frane electrode assemblies – Fabrication - Catal bipolar plates - Fuel cell catalysts – Precests - bi-Functional catalysts – Nanomaterials for sible fuel cells - Fuel cell stacks and systems ponnected applications.	ious and non-p or low temperatu	recious metal are fuel cells –
Unit – V	Hybri Conce	d Energy Systems pt of hybrid energy systems- Battery/supercapa ble- Applications - Hybrid fuel cell/battery syste	citor hybrid systeems- Example-A	(18 Hrs) ems- pplications.
University F Awasthi, O.N. (20 Berg, H. (2015). <i>B</i> press. Cetin, T. H., Kano <i>geothermal</i>	ley, N. Press. 15). <i>Ap</i> <i>Patterie</i> . oglu, M <i>energy</i>	(2007). Energy science: principles, technologie pplication of light and energy management. Nar s for electric vehicles: materials and electroches , & Yanikomer, N. (2019). Cryogenic energy st . Geothermics, 77, 34-40. Doi:10.1016/j.geother	osa. <i>mistry</i> . Cambrid torage powered of rmics.2018.08.00	ge university by
Ding, Y., & Zhang	g, Z. (20	tiomass to renewable energy processes. CRC pr 016). Nanoporous metals for advanced energy t nal Publishing.		175).
challenge. C	CRC pr			
rranco, A. (Ed.). (2015).	Rechargeable lithium batteries: from fundamen	tals to application	ons.

Huggins, R. A. (2009). Solid electrolytes. Advanced Batteries: Materials Science Aspects, 339-373. Lee, S., & Shah, Y. T. (2012). Biofuels and bioenergy: processes and technologies. CRC Press. Lewis, J. (2013). Encyclopedia of electrochemistry: Principles and applications. Introduction to electrochemistry. Anmol. Quaschning, V. V. (2010). Renewable energy and climate change. Wiley. Robert, H.M. (2007). Handbook of Energy Conservation, Volume-I. CBS. Singh, M.P. (2010). Future energy sources. Pearl Books. Sorensen, B. (2017). Renewable energy, 5th Edition. Academic Press. Thorpe, D. (2018). Solar Energy Pocket Reference. Routledge. > The students will be able to learn electrochemical reactions, lead acid batteries, and lead acid battery for PV and automotive applications. \geq The students attain remarkable knowledge about advanced anodes and cathode materials, theoretical capacity, battery fabrication technology and testing. \geq The students will be able to known about solar photovoltaic applications, Outcomes sulphur batteries, lithium sulphur and sodium sulphur battery. > The students will be obtain more information about fuel cell, precious and nonprecious metal catalysts, bi-functional catalysts and nanomaterials for low temperature fuel cells. \triangleright The students will be learning more knowledge about fuel cells for vehicles and grid connected applications.

Woodhead publishing.

Name of the Course Teacher: Dr. A. Nithya

		Semester-II			
Cours	e Code : 540207	Energy practical- II	Credit: 4	Hours per week	
List of E	xperiments:				
1. S	Synthesis of one dime	nsional nanomaterial by ele	ectrospinningmethod.		
2. S	Synthesis of nanocom	posite materials by solution	growth method using	capping agent.	
3. S	Synthesis of oxide nan	omaterials by hydrotherma	l method.		
4. X	KRD studies for calcu	lating the size of the nanopa	articles by Scherrer's f	ormula.	
5. E	Electrochemical chara	cterization of metal oxide n	anomaterials.		
6. S	Synthesis of conductin	g polymer for energy appli	cations.		
7. U	JV-Visible spectral a	alysis of dye-modified sem	niconductor oxide thin	films.	
8. S	Synthesis of visible light active nanomaterials.				
		anic pollutants using photoc	atalyst.		
10. E	Estimation of dissolved oxygen in industrial wastewater.				
11. E	. Estimation of chromium in industrial wastewater.				
12. A	Any other equivalent e	experiments.			

Name of the Course Teacher: Dr. S. Karuppuchamy, Dr.C. Karthikeyan, Dr. A.Nithya

		Semester -III		
Course Code: 54	0301	Course Name: Hydrogen Energy Systems	Credits: 5	Hours per week : 5
Objectives	of of > To me > To fue mi > To cel > To cla	 understand present and projected uses for hydrog natural gas, gas separation processes and character methane. acquire more information about partial oxidations acquire more information about partial oxidations are developments for gas separation. learn about phosphoric acid fuel cell, alkaline fuel cell, proton exchange membrane fuel cell, dire niature fuel cells. know about types of fuel cell, fuel cell efficiencie lls. acquire more knowledge about cryo compresenthrate hydrates, glass capillary arrays, glass n drogen storage and underground hydrogen storage. 	ristics of stean ion of hydroo el cell, direct ct methanol f es and applica ssion, carbon nicrospheres,	n reforming carbons and borohydride uel cell and tions of fuel nanotubes,
Unit – I	Preser Gas - Gas - Parti Separa	ogen from Fossil Fuels It and Projected Uses for Hydrogen - Natural Gas - Gas Separation Processes - Characteristics of Stear al Oxidation of Hydrocarbons - Membrane Develo Ition - Membrane Types - Membrane Reactors - Co	m Reforming pments for Ga	of Methane Is
Unit – II	Hydrogen from Biomass(18 Hrs)Photobiological hydrogen production potential – Hydrogen production by fermentation – Overview – Energetics – Thermotogales - Biochemical pathway for fermentative hydrogen production – Thermotoga - Hydrogen production by other bacteria - Co-product formation - Batch fermentation - Hydrogen inhibition - Role of sulphur – Sulfidogenesis - Use of other carbon sources obtained from agricultural residues - Process and culture parameters			
Unit – III	Water Splitting (18 Hrs) Electrolysis – Electrolyzers - Water Splitting with Solar Energy - Photovoltaic Cells-Solar -Thermal Process - Photo-electrochemical Cells - Direct Hydrogen Production - Tandem Cells - Photo-biochemical Cells.			
Unit – IV	Fuel C Fuel C Tempo Boroh Metha Types Reforn Efficie Small		ine Fuel Ce rane Fuel Ce onate Fuel Ce e Fuel Cell onary Power (ll - Direct ell - Direct ell - Internal - Fuel Cell Generation -
Unit – V	Hydrogen Storage Materials(18 Hrs)Hydrogen storage technologies: Compressed hydrogen - Liquid hydrogen - Chemical Storage: Metal hydrides - Carbohydrates - Ammonia - Amine borane complexes -Phosphonium borate - Carbonite substances - Physical storage: Cryo compressed - Carbon nanotubes - Clathrate hydrates - Glass capillary arrays - Glass microspheres - Stationary hydrogen storage - Underground hydrogen storage			
Ajay Singh, (2013	2013). 6). Engi	Green chemistry: A text book. Narosa. neering chemistry. CBS.		
Bhatia, S. C. (201	4). <i>Adv</i>	anced renewable energy systems, (Part 1). WPI Pub	olishing.	

Cheng, J. (Ed.). (2006). Biomass to renewable energy processes. CRC press.

Ferreira, G. (Ed.). (2013). Alternative energies: updates on progress (Vol. 34). Springer Science & Business Media.

Kikuchi, Y., Ichikawa, T., Sugiyama, M., & Koyama, M. (2019). Battery-assisted low-cost hydrogen production from solar energy: Rational target setting for future technology systems. International Journal of Hydrogen Energy, 44(3), 1451-1465. Doi: 10.1016/j.ijhydene.2018.11.119.

Lee, S., & Shah, Y. T. (2013). Biofuels and bioenergy: processes and technologies. CRC Press.

Math, M.C. (2019). Non-Conventional Energy Sources, Yes Dee Publishers.

Singh, M.P.(2010). Future energy sources. Pearl Books.

Welder, L., Stenzel, P., Ebersbach, N., Markewitz, P., Robinius, M., Emonts, B., & Stolten, D. (2019). Design and evaluation of hydrogen electricity reconversion pathways in national energy systems using spatially and temporally resolved energy system optimization. International Journal of Hydrogen Energy, 44(19), 9594-9607. Doi: 10.1016/j.ijhydene.2018.11.194.

5	· •
	> The students will be able to understand uses for hydrogen, natural gas, reforming of natural gas, gas separation processes and characteristics of steam
	reforming of methane.
	\succ The students will be able to learn more information about membrane
	developments for gas separation, partial oxidation of hydrocarbons.
	\succ The students will be able to comprehend about phosphoric acid fuel cell,
Outcomes	alkaline fuel cell, direct borohydride fuel cell, proton exchange membrane
Outcomes	fuel cell, direct methanol fuel cell and miniature fuel cells.
	\succ The students will be able to know about types of fuel cell, high temperature,
	molten carbonate fuel cell, direct carbon fuel cell, solid oxide fuel cell, fuel
	cell efficiencies and applications of fuel cells.
	> The students will be able to acquire knowledge on carbon nanotubes, glass
	capillary arrays, glass microspheres, stationary hydrogen storage and
	underground hydrogen storage.

Name of the Course Teacher: Dr. S. Karuppuchamy

		Semester -III			
Course Code: 54	0302	Course Name: Wind and Hydro Energy	Credits: 5	Hours per week : 5	
 To understand wind tower components, wind turbine size classes, towers and types of propellers. To understand wind chargers, grid connected wind turbines, wind farms, offshore wind farms, planning and designs To acquire more information about hydrology, potential of hydropower in India, classification of hydropower plants and small hydropower systems. To comprehend about tidal power plants, wave power plants, ocean current power plants and hydropower markets. To gain knowledge of hydro projects, potential of hydro power in north east India. 			farms, power in systems. nn current		
Unit – I	Wind - Elec	S Concepts–Wind Energy tower components - Wind turbine size classes – trical generator – Power - Air density - Swept and t and wind speed - Power in the Wind equation	rea - Cube of win	nd speed -	
Unit – II	Utilizi turbin	Energy Systems ng wind- Installations and parks: Wind charger es -Wind farms - Offshore wind farms - Plannin gy - Wind power markets - Outlook and Develo	ng and designs –	Economics –	
Unit – III	Hydro Plants	Dpower Plants-I logy - Potential of hydropower in India - Classi - Small Hydropower Systems: Overview of mic ns - Status of Hydropower Worldwide and India	cro - Mini and si		
Unit – IV	Unit – IVHydropower Plants-II(18 Hrs)Unit – IVIntroduction to Run-of-river power plants - Storage power plants - Pumped storage power plants - Tidal power plants - Wave power plants - Ocean current power plants - Hydropower markets - Outlook and development potential.			mped storage	
Unit – V	Design of Power Plant (18 Hrs) Selection of site for hydroelectric plant - Essential elements of hydroelectric power				
Reference and T Ahmed S (2015)			Ltd		
Ahmed, S. (2015). <i>Wind energy: theory and practice</i> . PHI Learning Pvt. Ltd. Boyle, G. (2012). <i>Renewable Energy: Power for a Sustainable Future</i> . Oxford.					
Burton Tony. (2011). Wind energy handbook. Wiley.					
Publishers.		2). Solar power generation: Technology, new co		cy. CRC	
Kothari, D.P. (2014). Wind Energy Systems and Applications. Narosa Publishers.					
Kraan, O., Chappin, E., Kramer, G. J., & Nikolic, I. (2019). The influence of the energy transition on the significance of key energy metrics. Renewable and Sustainable Energy Reviews, 111, 215- 223. Doi: 10.1016/j.rser.2019.04.032.					
grid with	multiple	, R., & Wang, X. (2019). <i>Optimal operation of wind-solar-hydro-battery power</i> . Applied ev.2018.11.072.			
Math, M.C. (2019	Math, M.C. (2019). Non-Conventional Energy Sources. Yes Dee Publishers.				
		onventional Energy Sources. Khanna Publishers			
Şen, Z. (2019). I	Innovati	(2013). <i>Wind Energy</i> . Jones & Bartlett Publishe ive methodologies in renewable energy: A re Doi: 10.1002/er.4619.		nal Journal of	

Name of the Course Teacher: Dr. C. Karthikeyan

		Semester -III		
Course Code: 54	0303	Course Name: Solar Thermal Energy	Credits: 5	Hours per week : 5
Objectives	 charad To cyc To To coc To 	understand solar radiation on the earth surface aracteristics, terrestrial radiation, solar insolation liation. acquire carnot cycle, supercritical rankine cycl cle, binary cycles and combined cycles. learn more knowledge about solar collectors and s comprehend about solar water heating system bling, domestic water heating and solar cooking. lean more information about solar panel ma ponomics, ecology, solar thermal market, outlook an	and measuren les, brayton c swimming poo , solar space unufacturing to	ial radiation nent of solar ycle, stirling labsorbers. heating and echnologies,
Unit – I	Solar Radiation and Measurement (18 Hrs) Solar radiation on the earth surface - Extraterrestrial radiation characteristics - Terrestrial radiation - Solar insolation - Spectral energy distribution of solar radiation - Depletion of solar radiation - Absorption - Scattering - Beam radiation - Diffuse and Global radiation - Measurement of solar radiation - Pyranometer - Pyrheliometer - Sunshine recorder. - Solar radiation - Measurement of solar radiation - Pyranometer -			
Unit – II	Therm superc Combi	Thermal Energy Conversion odynamic cycles – Carnot – Organic – Reheat - Re ritical Rankine cycles - Brayton cycle – Stirling cy- ined cycles - Solar thermal power plants - Paraboli outed collector - Hybrid solar-Gas power plants - So plant.	cle – Binary cy c trough system	ycles – n -
Unit – III	Introdu type -	Collectors action to Solar Collectors – Types of Solar Collector Concentrating type - Flat plate collectors -Concentr Collectors –Evacuated tube Collectors - Swimming	rating collector	rs – Air-
Unit – IV	Solar Thermal Systems (18 Hrs) Solar water heating system - Active solar heating - Passive Solar heating- Solar Communities - Solar Thermal Energy Applications, Solar Space Heating and Cooling, Domestic water heating, Solar cooking.			
Unit – V	Design of Industrial Solar Systems (18 Hrs) Solar panel manufacturing technologies - Solar Panel Specifications (Mechanical and Electrical specifications - Solar thermal Heating as support heating – Economics – Ecology - Solar thermal Market - Outlook and Development potential.			
Reference and T Garg, H.P. (2016)		s: energy: Fundamentals and applications. McGraw H	[i]].	
Khan, B.H.(2017) Kothari, D.P.(201	. Non- (4). Rene	Conventional energy resource. McGraw Hill. ewable energy resources and emerging technologie notovoltaic systems: Analysis and design. PHI Lear	s. PHI Learnin	g.
Solanki,C.S.(2013	3).Solar	photovoltaic technology and systems: a manual for rning Pvt. Ltd.	•	ainers and
Tester, J. W., Dral	ke, E. M	lar energy: Principles of thermal collection and sto I., Driscoll, M. J., Golay, M. W., & Peters, W. A. (mong options. PHI Learning.		
Twidell, J., & We	ir, T. (2	015). Renewable energy resources. Routledge. Energy: Technologies and project delivery for build	dings. John Wi	ley &

Wang, Z., Roffey, A., Losantos, R., Lennartson, A., Jevric, M., Petersen, A. U., & Börjesson, K. (2019). Macroscopic heat release in a molecular solar thermal energy storage system. Energy & Environmental Science, 12(1), 187-193. Doi: 10.1039/c8ee01011k.				
Outcomes	 The students will be able to learn solar radiation on the earth surface, extraterrestrial radiation characteristics, terrestrial radiation, solar insolation and measurement of solar radiation. The students gain more knowledge about carnot cycle, supercritical rankine cycles, brayton cycle, stirling cycle, binary cycles and combined cycles. The students will be able to understand about solar collectors and swimming pool absorbers. The students will be comprehend about solar water heating system, solar space heating and cooling, domestic water heating and solar cooking. The students will gain noteworthy information about solar panel manufacturing technologies, economics, ecology, solar thermal market, outlook and development potential. 			

Name of the Course Teacher: Dr. S. Karuppuchamy

Semester-III					
Course Code : 540307		Energy practical- III	Credit: 4	Hours per week	
List of 1	Experiments:				
1.	Fabrication of dye-sen	sitized solar cells.			
2.	Synthesis of photo and	de materials by Solution gro	owth technique.		
3.	Fabrication of p-n hetr	ojuntion solar cells.			
4.	I-V characterization of dye-sensitized solar cells.				
5.	Performance evaluation of supercapacitors.				
6.	Performance test on solar flat plate collector.				
7.	Effect of temperature and light intensity on solar cell characteristics.				
8.	Charging characteristics of battery using PV panel.				
9.	Performance testing of solar PV cells.				
10.	Preparation of biodiesel-alkaline transesterification.				
11.	11. Preparation of energy audit plan and analyzing energy audit data.				
	Any other equivalent e	1 2 2			

Name of the Course Teacher: Dr. S. Karuppuchamy, Dr. C. Karthikeyan, Dr. A. Nithya

	Semester - IV				
Course Code: 540401	Course Name: Energy Audit and Management	Credits: 5	Hours per week : 5		
Objectives	 To provide the basic knowledge about energy audit, i management, general principles of energy management skills and energy management strategy. To understand methodology and approach, maxim optimizing the input energy requirements, fuel and energy To create awareness about energy policy, role and r manager, motivation of employees, requirements for information systems, marketing, training and planning To educate first law of efficiency, second law of energy balance diagram, energy balance sheet and r system. To know about instruments for energy audit and me savings, types and accuracy. 	ent, energy r izing system rgy substituti esponsibilitie energy actio efficiency, m management	nanagement efficiency, on. s of energy on planning, aterials and information		
Unit – I	General Aspects General Philosophy and need of Energy Audit and Manag Objective of Energy Management - General Principles of I Energy Management Skills - Energy Management Strategy	Energy Manag			
Unit – II	Energy Audit(18 Hrs)Energy Audit: Need – Types - Methodology and Approach - Energy ManagementApproach - Understanding Energy Costs - Bench marking - Energy performance -Matching energy usage to requirements - Maximizing system efficiency -Optimizing the input energy requirements - Fuel and Energy substitution.				
Unit – III	Energy Policy Planning and Implementation(18 Hrs)Energy Policy – Purpose – Perspective - Contents and Formulation - Format and Ratification - Organizing: Location of Energy Manager - Role and responsibilities of Energy Manager – Accountability - Motivating – Motivation of employees - Requirements for Energy Action Planning - Information Systems: Designing - Barriers, Strategies - Marketing and Communicating Training and Planning.				
Unit – IV	Energy Balance & MIS (18 Hrs) First law of efficiency and Second law of efficiency - Facility as an Energy system - Methods for preparing process flow - Materials and Energy Balance diagram - Identification of losses – Improvements - Energy Balance sheet and Management Information System (MIS).				
Unit – V	Energy Audit Instruments (18 Hrs) Instruments for Audit and Monitoring Energy and Energy Savings - Types and Accuracy.				
Airports. In 0.	Altuntas, O., Sogut, M. Z., & Karakoc, T. H. (2019). End n Sustainable Aviation (pp. 9-36). Springer, Cham. Doi: 10	0.1007/978-3	-030-14195-		
Andrews, J., & Jelley, N. (2007). <i>Energy science: principles, technologies, and impacts</i> . Oxford University Press.					
Everett, R., Boyle	015). Application of light and energy management. Narosa. e, G., Peake, S., & Ramage, J. (2012). Energy systems and the future. Oxford University Press.	sustainability	v: Power for		
Fornasiero, P., & Graziani, M. (2012). Renewable resources and renewable energy: a global challenge. CRC press.					
	Energy management and conservation handbook. CRC. 014). Energy management. Elsevier.				

Robert, H.M. (2007). Handbook of energy conservation. V.1. CBS.			
Singh, M.P. (2010). Future energy sources. Pearl Books.			
Tester, J. W., Drake, E. M., Driscoll, M. J., Golay, M. W., & Peters, W. A. (2012). Sustainable energy: choosing among options. PHI Learning.			
Outcomes	 The students will be able to know basic information about energy audit, general principles of energy management, energy management skills and energy management strategy. The students will be able to understand methodology and approach, maximizing system efficiency, optimizing the input energy requirements, fuel and energy substitution. The students will be able to aware about energy policy, role and responsibilities of energy manager, requirements for energy action planning, information systems, marketing, training and planning. The students will be able to know more knowledge about first law of efficiency, second law of efficiency, energy balance diagram, energy balance sheet and management information system. The students will be able to know about instruments for energy audit and monitoring energy, energy savings, types and accuracy. 		

Name of the Course Teacher: Dr. S. Karuppuchamy, Dr. C. Karthikeyan,

Semester- IV				
Course Code: 540999	Course Name: Project Work & Viva- Voce	Credit: 8	Hours per week : 16	

Name of the Course Teacher: Dr. S. Karuppuchamy

Elective Courses

		Elective Course			
Course Code: 54	0501	Course Name: Biochemistry for Energy Sciences	Credits: 4	Hours per week : 4	
Objectives	 > To understand biological macromolecules, storage and transfer of biological information, biochemistry of water, water as the biological solvent, hydrogen bonding and solubility and buffer systems. > To learn about amino acids and proteins, structural properties of proteins, studying protein structure and function. > To understand about enzymes, kinetic properties of enzymes, substrate binding, mechanism of enzyme action and enzyme inhibition. > To study about carbohydrates, reactions of monosaccharides, polysaccharides, glycoproteins, structure and biological function, fatty acids, polar and nonpolar lipids. > To understand about biochemical conversion process, biogas production mechanism and technology, types of digesters, design of biogas plants, installation, operation and maintenance of biogas plants and biogas applications. 				
Unit – I	An In Contai and C Bioch	Biochemistry (14 Hrs) An Introduction to Biochemistry: Roots of Biochemistry - All Living Matter Contains C,H,O,N,P and S, Biological Macromolecules – Organelles – Cells - and Organisms - Storage and Transfer of Biological Information - The Biochemistry of Water: Water as the Biological Solvent - Hydrogen Bonding and Solubility - Buffer Systems.			
Unit – II	Amino Acids and Proteins(15 Hrs)Amino Acids and Proteins: Amino Acids in Proteins - Polypeptides and Proteins - Protein Function - Structural Properties of Proteins - Studying Protein Structure and Function.				
Unit – III	Enzymes (15 Hrs) Introduction to Enzymes - Types of Enzymes - Enzymes as Biological Catalysts - Kinetic Properties of Enzymes - Substrate Binding and Mechanism of Enzyme Action - Enzyme Inhibition.				
Unit – IV	Carbohydrates (14 Hrs) Carbohydrates: Chemical Structure and Biological Function – Monosaccharides - Carbohydrates in Cyclic Structures - Reactions of Monosaccharides – Polysaccharides – Glycoproteins - Structure and Biological Function: Fatty Acids - Polar and Nonpolar Lipids.				
Unit – V	Biochemical conversion process(14 Hrs)Biochemical conversion process: Anaerobic digestion – Biogas productionUnit – Vmechanism and technology - Types of digesters - Design of biogas plants –Installation - Operation and maintenance of biogas plants - Biogas slurryutilization and management - Biogas applications.			uction blants –	
Reference and T	extbook	xs:			
		& Patel, G. K. (2013). <i>Biofuels production</i> . John	-		
		nced Renewable Energy Systems, Part –II. WPI			
Boyle, G. (2012). <i>Renewable Energy: Power for a Sustainable Future</i> . Oxford.					
Gikonyo, B. (Ed.). (2014). Advances in biofuel production: algae and aquatic plants. CRC Press. Kothari, D.P. (2014). Renewable Energy Resources. PHI Learning.					
Lee, S., & Shah, Y. T. (2012). <i>Biofuels and bioenergy: processes and technologies</i> . CRC Press.					
		Conventional Energy Sources. Yes Dee Publishe	0	- 1 1000.	
		015). <i>Renewable energy resources</i> . Routledge.			
, ,	, (-	,			

Zhou, X., Mandal, S., Jiang, S., Lin, S., Yang, J., Liu, Y., & Yan, H. (2019). Efficient Long-range,						
Directiona	Directional Energy Transfer through DNA-Templated Dye Aggregates. Journal of the					
American	American Chemical Society. Doi: 10.1021/jacs.9b01548.					
Outcomes	 The students will be able to understand biological macromolecules, storage and transfer of biological information, biochemistry of water, water as the biological solvent, hydrogen bonding and solubility and buffer systems. The students will be able to know about amino acids and proteins, structural properties of proteins, studying protein structure and function. The students study more information about enzymes, kinetic properties of enzymes, substrate binding, mechanism of enzyme action and enzyme inhibition. The students will be able to learn about carbohydrates, reactions of monosaccharides, polysaccharides, glycoproteins, structure and biological function, fatty acids, polar and nonpolar lipids. The students will be able to learn about biochemical conversion process, biogas production mechanism and technology, installation, operation and maintenance of biogas plants and biogas applications. 					

Name of the Course Teacher: Dr. S. Karuppuchamy

		Elective Course			
Course Code: 540502		Course Name: Advanced Nanomaterials	Credits: 4	Hours per	
		and Their Applications		week : 4	
Objectives	 To understand electrochemical deposition and microwave irradiation method for synthesis of nanoparticles and advantages of nano materials. To know more information about various methods for synthesis of nanowires, nanorods, nanoclusters, carbon nanotubes and nanocomposites. To comprehend on design factors for biomaterials, biopolymers and bioplastic. To acquire knowledge about diamagnetism, paramagnetism and ferrromagnetism. To understand anti-ferromagnetism, magnetic hysteresis, perovskite solar cells- advanced batteries, supercapacitor, designate solid oxide fuel cell and self- 				
Unit – I	Prepar Solvot Micro disadv Nanoc nanofi	cleaning Synthesis of Nanomaterials (15 Hrs) Preparation methods such as hydrothermal method - Precipitation method - Solvothermal method – Electrospinning - Electrochemical deposition and Microwave irradiation method for synthesis of nanoparticles - Advantages and disadvantages - Various methods for synthesis of nanowires – Nanorods - Nanoclusters - Carbon nanotubes – Nanocomposites - Polymeric nanoparticles and nanofibers.			
Unit – II	Hybrid Materials(15 Hrs)Nanocomposites - Preparation of Metal - Metal oxide composites - Chemicalstructure and its properties - Metal oxide-polymer composite preparation -Chemical structure - Energy storage properties - CNT-Metal oxide compositespreparation - Chemical structure - Thermal properties - Natural fiber composite -Properties and Applications of Hybrid materials.				
Unit – III	Biomaterials(14 Hrs)Background of Biomaterials: Historical development of Biomaterials - Design factors for biomaterials - Implant materials - Biomaterials classifications – Bioinert- Bioactive and bioresorbable biomaterials – Biopolymers - Synthetic biodegradable polymer - Bioplastics.				
Unit – IV	Magnetic Materials (14 Hrs) Introduction: Types of magnetic materials – Diamagnetism– Paramagnetism– Ferrromagnetism – Anti-ferromagnetism – Magnetic hysteresis – Soft and hard magnetic materials – Ferrimagnetic materials (Ferrite) – Applications of ferrites.				
Unit – V	Applications of Nanomaterials (14 Hrs) Pharmaceutical Water purification - Dye sensitized solar cells - Perovskite solar cells - Electrochemical analysis - Advanced batteries – supercapacitors - Hybrid capacitors - Electrical devices - Magnetic devices – Sensors - Solid oxide fuel cell and Self-cleaning.			(14 Hrs) skite solar s - Hybrid	
Reference and T					
	<i>,</i>	Biomass to renewable energy processes. CRC pr	ess.		
-		016). Electromagnetics. McGraw Hill.			
- ·	·	materials handbook. CRC. ials in energy and environmental applications.	Pan Stanford		
		anoparticle technology handbook. Elsevier.	i ali Stallolu.		
	aston, K	K.M., Ragatz, R.A.(2004). Chemical process pri	nciples. Part-1:	Material	
	Lee, S., & Shah, Y. T. (2012). Biofuels and bioenergy: processes and technologies. CRC Press.				
		Introduction to nanotechnology. Wiley.	-		
	(2015)	. Metal chalcogenide nanostructures for renewa	ible energy appli	ications.	

Upadhyaya G. S.	Upadhyaya G. S. & Anish, U. (2014). Materials Science and Engineering. Viva Books.			
Wautelet, Michel. (2009). Nanotechnologies. IET.				
Wolf, Edward L. Nanoscienc	(2013). <i>Nanophysics and nanotechnology: An introduction to modern concepts in ce.</i> Wiley.			
Outcomes	 The students will be able to understand electrochemical deposition, synthesis of nanoparticles and advantages of nanomaterials. The students will be able to know more information about various methods for synthesis of nanomaterials. The students will learn design factors for biopolymers, bioplastic and biomaterials. The students gain more information about anti-ferromagnetism, perovskite solar cells, advanced batteries and super capacitors. The students acquire more information about various methods for synthesis nanomaterials. 			

		Elective Course		
Course Code: 54	0503	Course Name: Nuclear Energy	Credits: 4	Hours per
				week : 4
Objectives	 To understand about the nuclear reactions, nuclear reactors, heat transfer techniques and reactor shielding. To educate nuclear fuel cycle, uranium production, purification, nuclear fuels like zirconium, thorium and beryllium. To understand nuclear fuel cycles, spent fuel characteristics, role of solvent extraction in reprocessing and solvent extraction equipment. To learn fuel element dissolution, precipitation process, ion exchange, redox, purex, refining, isotopes and principles of isotope separation. To understand more information about nuclear wastes, safety control -pollution control and abatement, international convention on safety aspects and radiation hazards prevention 			
Unit – I	Mecha Reacti and C	ar Reactions nism of Nuclear Fission - Nuclides - Radioactions - Fission Process - Reactors - Types of F onstruction of Nuclear reactors - Heat Transfors - Reactor Shielding.	ast Breeding Re	actor - Design
Unit – II	Reactor Materials(15 Hrs)Nuclear Fuel Cycles - Characteristics of Nuclear Fuels - Uranium - Production andPurification of Uranium - Conversion to UF_4 and UF_6 - Other Fuels like Zirconium- Thorium - Berylium.			
Unit – III	Reprocessing(14 Hrs)Nuclear Fuel Cycles -Spent Fuel Characteristics - Role of solvent extraction in Reprocessing - Solvent Extraction Equipment.			
Unit – IV	Separation of Reactor Products(14 Hrs)Processes to be Considered - 'Fuel Element' Dissolution - Precipitation Process -Ion Exchange - Redox - Purex - Chelation - U ²³⁵ - Hexone - TBP and ThoraxProcesses - Oxidative Slagging and Electro - Refining - Isotopes - Principles of			
Unit – V	Isotope Separation. Waste Disposal and Radiation Protection (14 Hrs) Types of Nuclear wastes - Safety control -Pollution control and abatement- International convention on safety aspects - Radiation hazards prevention.			nent-
Reference and T			10.11.1	
	<i>´</i>	nced Renewable Energy Systems, Part –II. WP		
		ble Energy: Power for a Sustainable Future. O		
Dresselhaus, M. S Doi: 10.103		omas, I. L. (2001). <i>Alternative energy technolog</i> 4599.	gies. Nature, 414	(6861), 332.
<i>distributed</i> Internation	energy al Jo	, M., Commenge, J. M., Falk, L., & Gil, I. I systems using hydrogen as energy vector: 2 purnal of Hydrogen Energy, 4 2018.09.177.		erature review.
Kothari, D.P. (20	14). <i>Ren</i>	ewable Energy Resources. PHI Learning.		
Math, M.C. (2019). Non-	Conventional Energy Sources. Yes Dee Publish	ers.	
Rai, G.D. (1998).	Non Co	nventional Energy Sources. Khanna Publishers	. Delhi.	
Twidell, J., & Weir, T. (2015). Renewable energy resources. Routledge.				
Outcomes	hea ≻ Th pro	e students will be able to know about the nuclea at transfer techniques and reactor shielding. e students gain noteworthy knowledge about moduction and purification, nuclear fuels like zirc ryllium.	uclear fuel cycle,	uranium

> The students will be able to acquire more information about nuclear fuel
cycles, spent fuel characteristics, role of solvent extraction in reprocessing and solvent extraction equipment.
The students gain more knowledge about fuel element dissolution, precipitation process, isotopes and principles of isotope separation.
> The students will be able to gain more knowledge about nuclear wastes, safety
control, pollution control, international convention on safety aspects and radiation hazards prevention.

Name of the Course Teacher: Dr. S. Karuppuchamy

		Elective Course		
Course Code: 540504		Course Name: Advanced Instrumental	Credits: 4	Hours per
		Methods of Analysis		week : 4
Objectives	 To acquire more more mormation about applications of voltaminetry stripping methods and electrochemical impedance spectroscopy. To understand advanced characterization techniques like XRD, SEM, EDAX, and TEM and XPS. To understand about thermo gravimetric analysis, differential thermal analysis, 			
		ferential scanning calorimetric and micro therm c spectroscopy	unury515.	(15 Hrs)
Unit – I	Optica Instrum absorp Instrum	I atomic spectroscopy: Designs of Optical In nents - Principles of Fourier Transform Op tion spectrometry - atomic fluorescence spec nentation - Atomic Fluorescence Spectroscopy ds - X-ray Absorption Methods.	tical Measureme trometry - Atom	bes of Optical ents - Atomic ic Absorption
		ular spectroscopy		(15 Hrs)
Unit – II	- II Ultraviolet – Visible molecular absorption spectroscopy - Principle and instrumentation - Infra-red Absorption Spectroscopy - IR Instrumentation - IR Sources and Transducers - FTIR - Raman Spectroscopy - Applications of Raman Spectroscopy - SERS.			tion - IR
Unit – III	Electroanalytical chemistry(14 Hrs)Electrochemical Cells Potentials - Currents in Electrochemical Cells - Types ofElectroanalytical methods - Potentiometry - Principles - Metallic IndicatorElectrodes - Membrane Indicator Electrodes.Potentiometric Titrations - Coulometry - Current - Voltage Relationships durinElectrolysis - Controlled - Potential Coulometry - Coulometric TitrationsVoltammetric Instrumentation - Cyclic Voltammetry - Pulse VoltammetryApplications of Voltammetry Stripping Methods - Electrochemical impedancespectroscopy.			ls - Types of illic Indicator onships during c Titrations - foltammetry -
Unit – IV	Advanced Characterization Techniques for Energy Materials(14 Hrs)Principles and Applications of X-ray Photoelectron Spectroscopy (XPS) -Scanning Electron Microscopy (SEM) - Scanning Tunneling Microscopy (STM) -Atomic Force Microscopy (AFM) - Transmission Electron Microscopy (TEM) - X-ray diffraction (XRD) and Energy dispersive X-ray spectroscopy (EDAX).			'S) - opy (STM) - y (TEM) - X-
Unit – V	Thermal Analysis(14 Hrs)Thermal Methods: Thermo gravimetric Analysis - Differential Thermal Analysis - Differential Scanning Calorimetry - Micro thermal Analysis.			
Reference and T	extbool	(S:	-	
Ahuja, S. (2006).	Compre	chensive analytical chemistry. V.47: Modern in:	strumental analy.	sis. Elsevier.
Aruldhas, G. (201	4). <i>Mol</i>	ecular structure and spectroscopy. PHI Learnin	lg.	
Christian, G.D. (2	2004). <i>A</i>	nalytical chemistry. Wiley.		
Sb_2S_3 thin f	Mane, R. S., & Lokhande, C. D. (2003). HRTEM, SEM and XRD characterization of nanocrystalline Sb ₂ S ₃ thin films deposited by chemical bath route. Surface and Coatings Technology, 172(1), 51- 56. Doi: 10.1016/S0257-8972(03)00316-5.			
Skoog, D. A., (20	11). Fu	ndamentals of analytical chemistry. Cengage.		
		G., & Nieman, T. A. (2004). Principles of Instru	mental Analysis	, Thomson

Brooks/Col	e Asia Pvt. Ltd., Singapore, 5, 4-7.	
Willard, H.H. (2012). Instrumental methods of analysis. CBS.		
	itt, L. L., Dean, J. A., & Settle, F. A. (1986). <i>Instrumental methods of analysis</i> , CBS and Distributors. CBS Publishers, 580, 626.	
and GC/M	. Y., Cui, M., Zhao, J., He, M., Kim, J., & Li, D. (2019). Fast on-fiber derivatization S analysis of phytohormones in wheat based on pencil-type coated carbon fibers. istry, 274, 254-260. Doi: 10.1016/j.foodchem.2018.09.009.	
Outcomes	 The students gain more knowledge about AAS, AFS, X-ray flurosence and X-ray absorption. The students will be able to understand about principle and instrumentation of IR spectroscopy, Raman spectroscopy and applications of Raman spectroscopy. The students will be gain more information about potentiometry, coulometry, voltammetric, cyclic voltammetry, and pulse voltammetry. The students will be able to acquire more information about applications of voltammetry stripping methods and electrochemical impedance spectroscopy. The students gain noteworthy knowledge about XRD, SEM, EDAX, and TEM and XPS. The students gain more knowledge about thermo gravimetric analysis, differential thermal analysis, differential scanning calorimetric and micro thermal analysis. 	

Name of the Course Teacher: Dr. A. Nithya

		Elective Course				
Course Code: 54	0505	Course Name: Biofuels	Credits: 4	Hours per week : 4		
Objectives	 To understand biomass resources, biomass assessment, biomass to biofuel and characteristics of biomass. To acquire various biofuels feedstocks such as sugar, pant oil, solid and animal waste. To study biofuel production, biorefinery and biochemical reactions. To understand ethanol production technology and feedstocks. To study biodiesel, feedstock, production process and catalyst in biodiesel production 					
Unit – I	Bioma assess estima	Biomass (15 Hrs) Biomass resources: Classification and characteristics - Techniques for biomass assessment - Application of remote sensing in forest assessment - Biomass estimation - Biomass to biofuel - Source and classification of biofuels and their characteristics.				
Unit – II	Biofue Sugar Forest biopro	Biofuel Feedstocks (15 Hrs) Biofuel feedstocks – Starch - Cereal grains - Other grains - Tubers and roots - Sugar feedstocks - Sugarcane sugar beet – Lignocellulosic biomass feedstocks - Forest products and residues - Agricultural residues - Agricultural processing bioproducts - Dedicated energy crops - Plant oils and animal fats - Miscellaneous feedstocks - Animal waste - Municipal solid waste.				
Unit – III	Biorefinery(14 Hrs)Biorefinery - Biofuel production and use - Harvesting Energy from BiochemicalReaction - Biochemical Pathways - Review for Organo- Heterotrophic metabolism- Aerobic respiration - Anaerobic respiration – Fermentation - Overview forLithotrophic growth - Overview for Phototrophic metabolism - Light reactions -Anabolic dark reactions.					
Unit – IV	Ethanol Production (14 Hrs) Ethanol production - Ethanol production from sugar and starch feedstocks - Micro- Organisms - Process technology - Ethanol production from Lignocellulosic feedstocks: The sugar platform - The syngas platform.					
Unit – V	Biodiesel Production (14 Hrs) Introduction to biodiesel production process - Transesterification – Esterification –			or alkali ion - Plant		
Reference and T Ahluwalia, V.K. (ks: Green chemistry: A text book. Narosa.				
	. ,	ustrial bioprocess technology. DPH.				
Babu, V., Thapliy	val, A., &	& Patel, G. K. (2014). Biofuels production. John	Wiley & Sons.			
	Ballesteros, M., & Manzanares, P. (2019). Liquid Biofuels. In The Role of Bioenergy in the Bioeconomy (pp. 113-144). Academic Press. Doi: 10.1016/B978-0-12-813056-8.00003-0.					
the organic	Barampouti, E. M., Mai, S., Malamis, D., Moustakas, K., & Loizidou, M. (2019). Liquid biofuels from the organic fraction of municipal solid waste: A review. Renewable and Sustainable Energy Reviews, 110, 298-314. Doi: 10.1016/j.rser.2019.04.005.					
		s to renewable energy processes. CRC.				
Ferreira, G. (Ed.) Business M	· /	. Alternative energies: updates on progress (Vo	ol. 34). Springer	Science &		

Business Media.

Gikonyo, B. (Ed.). (2013). Advances in biofuel production: algae and aquatic plants. CRC Press.

Lee Sunggyu. (2012). Biofuels and Bioenergy: Process and Technologies. CRC.

Math, M.C. (2019). Non-Conventional Energy Sources. Yes Dee Publishers.

Quaschning, V. (2016). Understanding renewable energy systems. Routledge.				
Quaschning, V. V	Quaschning, V. V. (2019). Renewable energy and climate change. Wiley.			
Sodhi, G.S. (2013). Fundamental concepts of environmental chemistry. Narosa.				
Sorensen, B. (20	17). Renewable energy, 5 th Edition. Academic Press.			
Outcomes	 The students will be able to understand biomass resources, biomass assessment, biomass to biofuel and characteristics of biomass. The students acquire more information about various biofuels feedstocks such as sugar, pant oil, solid and animal waste. The students will be able understand biofuel production, biorefinery and biochemical reactions. The students will be able to understand more knowledge about ethanol production technology and feedstocks. The students will be able to study biodiesel, feedstock, production process and catalyst in biodiesel production 			

		E	ective Course		
Course Code: 54	Course Code: 540506 Course Name: Polymer Science and Credits: 4 Hours polymer Science and				
Course Coue. 54			nology		week : 4
Objectives	 To understand basic concept of polymer chemistry, polymerization, raw materials and kinetics of polymerization reactions. To learn more information about property and structure of polymers, polymer testing and analysis of polymer, To study product design, applications, characterization and fabrications of polymers. To understand polymer materials, biodegradable, conducting, magnetic polymers and non-linear optical polymers. To identify various applications of polymers in energy devices, thermoxidative 				
			ffluent disposal and feed	istock scarcity.	(14 IIma)
Unit – I	Basic princi		Basic concepts - Polyme tep, chain and other poly		
		er Production			(14 Hrs)
Unit – II	Handl prepai	ing and storage) - Po ation - Testing stand	it operations - Polymer r lymer structure and prop ards and methods - Poly Polymer applications.	perty - Polymer testin	ng (sample
Unit – III	Characterization of Polymers(14 Hrs)Polymer characterization: Polymer modification - Multicomponent polymericmaterials (Polymer miscibility - Polymer blends and alloys - Filled plastics -Polymer composites) - Polymer compounding and fabrication (Polymer additives -Compounding processes - Fabrication techniques - Post fabrication operations).				
		of Polymers	*	*	(15 Hrs)
Unit – IV Frontiers of polymer materials: Biodegradable polymers - Biomedical polymers - Conducting polymers - Magnetic polymers - Polymers for space - N optical polymers.					
Unit – V	Application of polymers inenergy devices (15 Hrs) Application of polymers in energy devices - Problems of polymer (Thermoxidative degradation - Fire hazards – Toxicity - Effluent disposal - Feedstock scarcity).				
Reference and T					
a granular	sludge	nembrane bioreacto	z-Mendoza, C. E. (2019) r. Fuel, 241, 954-961.do		
Charles E. Carrah	er. (200	5). Polymer chemist	ry. Marcel Dekker.		
•	<i>,</i>	• • •	science and technology, cycling of polymers. CBS	•	er, rheology,
with renew	able en	ergy for hydrogen p	Polymer electrolyte ma production. In Current 7 sevier. doi: 10.1016/B9	Frends and Future E	Developments
Jain, Jain. M. (20	16). Eng	ineering Chemistry.	Dhanpat Rai.		
Misra, G.S. (2010). Intro	luctory polymer che	<i>mistry</i> . New Age interna	tional.	
Moawia, R. M., Nasef, M. M., Mohamed, N. H., Ripin, A., & Zakeri, M. (2019). Biopolymer catalyst for biodiesel production by functionalisation of radiation grafted flax fibres with diethylamine under optimised conditions. Radiation Physics and Chemistry, 108375. doi: 10.1016/j.radphyschem.2019.108375.					
Mohan kumar, H.	(2017)	Advanced polymer	chemistry. Centrum Pres	s.	
Okan, M., Aydin,			•		

10.1002/jc	tb.5778.
Rudnik, E. (2013). Compostable polymer materials. Elsevier
Outcomes	 The students gain more information about polymer chemistry, polymerization principles and processes, types of polymerization and polymer kinetics. The students will be able to know about fabrication, structure, testing, and property of polymers, polymer product design and applications of polymers. The students acquire more knowledge about characterization of polymers, compounding of polymers and post fabrication operations. The students will be able to attain more information about polymer materials, biodegradable polymers, conducting polymers and nonlinear optical polymers. The students will be able to understand application of polymer in energy device and problems of polymers.

Name of the Course Teacher: Dr. A. Nithya

		Elective Course		
Course Code: 54	0507	Course Name: Climate Change and CO ₂	Credits: 4	Hours per
		Emission Assessment		week : 4
 To understand the important contemporary topics in the field of environment science especially in the area of climate change. To learn about the overview of energy sources and technologies and social a economic implications of energy uses. To understand about the mechanism of greenhouse gases emission and international concern on climate change and mitigation efforts. To acquire advanced knowledge about carbon dioxide emission and conversion/consumption. 		l social and and		
		understand about carbon credit and mitigation tech	hniques.	(14 II.ug)
Unit – I	Introd consu	luction to Energy action to Energy: Overview of energy sources and nption pattern - Social and economic implication sparity.		
		uction to Global Climate Change		(14 Hrs)
Unit – II	Mecha impact	action to global climate change: Theory of mism of Greenhouse Gases Emission - Theory ar as - Global overview - International concern on Cli tion efforts.	nd proof of cli	mate change
Unit – III	Carbon dioxide (CO2) Emissions and Conversion/Consumption(14 Hrs)Carbon dioxide (CO2) emissions in relation to energy conversion/consumption: Theory of CO2 emission in relation to energy conversion processes - Fundamental concept on combustion - Practical examples and comparison of (i) Different technologies and (ii) Different resources used for energy conversion in relation to CO2 emission - Role of technology upgradation and alternative resources on reduction of CO2 emission.		mption: ndamental erent relation to	
Unit – IV	Methodology for CO ₂ assessment/Carbon foot print: Estimation of emission from		conversion -	
Unit – V	Carbon Credit (15 Hrs) Carbon Credit: Definition - Concept and examples - Carbon credit - National		tional	
Reference and Textbooks: Basile, A., & Nunes, S. P. (Eds.). (2011). <i>Advanced membrane science and technology for</i> <i>sustainable energy and environmental applications</i> . Woodhead.				
Boyle, G.(2012). Renewable energy: Power for a sustainable future. Oxford.				
	Everett, R., Boyle, G., Peake, S., & Ramage, J. (2012). Energy systems and sustainability: Power for a sustainable future. Oxford University Press.			Power for
Jayaprakash, R. (2015). Engineering chemistry. CBS.				
Math, M.C. (2019). Non-Conventional Energy Sources. Yes Dee Publishers.				
Quaschning, V. V	. (2010)	. Renewable energy and climate change. Wiley.		
Singh, M.P. (2010)). Futur	re energy sources. Pearl Books.		
Outcomes	env ≻ Th tec ≻ Th	e students will be able to know important contemp vironmental science especially in the area of clima e students gain more knowledge about overview o hnologies and social and economic implications of e students will be able to understand mechanism of ission and international concern on climate chang	te change. f energy source f energy uses. f greenhouse g	es and ases

The students gain noteworthy knowledge about carbon dioxide emission and conversion/consumption.
The students will be able to acquire more information about carbon credit and mitigation techniques.

NON MAJOR ELECTIVE COURSE (For other Departments)

Course Cod 540701	e: Course Name: Basic Concepts in Energy Sciences	Credits: 2	Hours per week : 3
540701	 Sciences To understand energy resources, conventional and no 	n conventione	
Objectives	 resources, energy needs. To knowledgeable on solar energy conversion, solar concentrator and other applications, solar photovoltaic, fabrication and types of solar cells. To acquire about wind energy conversion, wind farms in India, advantages and 		
Unit – I	Energy Sources (10 Hrs) Environment and sustainable development - Energy sources - Sun as the source of		
Unit – II	Solar Energy (11 Hrs) Solar radiation: Measurements and prediction - Solar thermal energy conversions		
Unit – III	it – III Wind Energy (11 Hrs) Wind Resource: Meteorology of wind, India's wind energy potential and challenges -Distribution across the world - Eolian features - Biological indicators - Wind measurement systems - Wind Energy Conversion Systems.		
Unit – IV	Unit – IV Biomass as energy resources - Classification and estimation of biomass - Source and characteristics of biofuels – Biodiesel – Bioethanol – Biogas - Waste to energy conversions.		
Unit – V	Unit - VGeothermal energy Introduction - Geothermal sources - Advantages and disadvantages of geothermal energy over other energy forms - Geothermal energy in India: Prospects Applications of Geothermal energy - Material selection for geothermal power plants.		
Reference and	Textbooks:		
Babu, V., Thap	iyal, A., & Patel, G. K. (2014). Biofuels production. John	Wiley & Sons.	
Bhatia, S.C. (20	Bhatia, S.C. (2014). Advanced Renewable Energy Systems, Part -II, WPI Publishers.		
Boyle, G.(2012	. Renewable Energy: Power for a Sustainable Future. Ox	ford.	
Burton Tony. (Burton Tony. (2011). Wind energy handbook. Wiley. Gikonyo, B. (Ed.). (2014). Advances in biofuel production: algae and aquatic plants. CRC Press. Jayarama Reddy, P. (2012). Solar power generation: Technology, new concepts and policy.CRC Publishers. 		
Gikonyo, B. (E			
Publisher			
	014). Renewable Energy Resources. PHI Learning.		
	2012). Biofuels and Bioenergy: Process and Technologies.		
	19). Non-Conventional Energy Sources. Yes Dee Publishe	rs.	
).Non Conventional Energy Sources. Khanna Publishers.		
	z Silk, L. (2013). Wind Energy. Jones & Bartlett Publisher	s.	
Rosen, M. A., &	Koohi-Fayegh, S.(2017). Geothermal Energy. Wiley.		

Sukhatme, S.P. (1984). Solar Energy: principles of Thermal Collection and Storage. Tata McGraw-

Hill.			
Twidell, J., &	Twidell, J., & Weir, T. (2015). Renewable energy resources. Routledge.		
Outcomes	 The students will be able to understand energy resources, conventional and non-conventional energy resources, energy needs. The students gain more information about solar energy conversion, solar concentrator and other applications, solar photovoltaic, fabrication and types of solar cells. The students will be able to acquire about wind energy conversion, wind farms in India, advantages and disadvantages of wind energyconversions. The students know about origins, uses of biomass energy, sources and characteristics of biofuels like biodiesel, bioethanol andbiogas. The students will be able to understand about geothermal energy, applications of geothermal energy, tidal power plant and limitations of tidal power generation. 		

Name of the Course Teacher: Dr. S. Karuppuchamy

Course Code: 54	40702 Course Name: Renewable Energy and Energy Storage Systems Credits: 2 Hours per week : 3			
	To understand world energy use, energy scenario in India, potentials and			
	applications. To acquire various energy storage and conversion systems. To know about energy system, time variable, PV power production, wind power			
Objectives	production, food production and biofuels production.			
	To learn more information about geothermal sources, materials selection and			
	applications of geothermal energy. To understand more knowledge about hydrogen storage, utilization, safety			
	management and hydrogen technology in India.			
	Introduction (10 Hrs)			
Unit – I	World energy use – Reserves of energy resources – Environmental aspects of			
	Energy Storage and Conversion Systems (11 Hrs)			
	Introduction - Storage of mechanical energy - Electrical energy - Chemical energy			
Unit – II	- Thermal energy - Electrochemical energy (Batteries and supercapacitors) Basics			
	- Working - Advantages and drawbacks - Types - Comparative analysis -			
	Thermodynamics and kinetics of fuel cell process – Performance of fuel cell –			
	Applications. (11 Hrs)			
	Energy supply systems (11 1115) Energy systems – Stimulation of system performance – Treatment of time variable			
Unit – III	– Load structure - Photovoltaic power production – Wind power production – Food			
	production – Biofuels production.			
	Geothermal Energy (11 Hrs)			
	Introduction - Geothermal Sources - Advantages and Disadvantages of			
Unit – IV	Geothermal Energy over other energy forms – Geothermal Energy in India:			
	Prospects – Applications of Geothermal Energy - Material Selection for Geothermal Power Plants.			
	Hydrogen Energy (11 Hrs)			
Unit – V Unit – V Unit – V Introduction – Hydrogen Production- Hydrogen storage – Hydrogen Transpo - Utilization of Hydrogen Gas – Hydrogen as an Alternative Fuel for Motor Vehicles – Safety and management – Hydrogen Technology Development in				
Reference and				
	alilpour, K. R. (2019). Single and Polystorage Technologies for Renewable-Based			
Hybrid	d Energy Systems. In Polygeneration with Polystorage for Chemical and Energy			
	(pp. 77-131). Academic Press. Doi: 10.1016/B978-0-12-813306-4.00004-5.			
	14). Advanced Renewable Energy Systems, Part –II. WPI Publishers.			
	tanè, S., & Hadri, B. (2019). Development of High-Efficiency PERC Solar Cells			
	Using Atlas Silvaco. Silicon, 11(1), 145-152. Doi: 10.1007/s12633-018-9838-8.			
	. Renewable Energy: Power for a Sustainable Future. Oxford.			
). (2013). Alternative energies: updates on progress. Springer Science & Business			
	Media.			
	014). <i>Renewable Energy Resources</i> . PHI Learning.			
· · · · ·	Rai, G.D. (1998). Non Conventional Energy Sources. Khanna Publishers.			
Twidell, J. (2015	5). <i>Renewable Energy Resources</i> . Routleadge Publishers.			
Outcomes	The students will be able to gain more information about world energy use, energy scenario in India, potentials and applications. The students gain more information about various energy storage and conversion			
	systems.			
1	The students will be able to acquire about energy system, time variable, PV power			

	production, wind power production, food production and biofuels production.
	The students gain more information about learn more information about
	geothermal sources, materials selection and applications of geothermal energy.
	The students will be able to know more knowledge about hydrogen storage,
	utilization, safety management and hydrogen technology in India.

Name of the Course Teacher: Dr. S. Karuppuchamy, Dr. C. Karthikeyan, Dr. A.Nithya

Course Code	: 540703	Course Name: Energy Conversion and	Credits: 2	Hours per
	N T	Conservation Techniques		. week : 3
Objectives Unit – I	 To a To u To u irrev To a cons instri Convers Heat ger Convers Augment 	nderstand more information about solar and wi equire wave energy conversion and pneumatic anderstand conversion of fuel and biological mat ass, generation of liquid biofuels and other con inderstand energy conservation, conventional tea ersible cycles, carnot, stirling and rankine cycle equire economic concept of energy, principles of ervation technologies, combined cycle power g imentation and control. Sion of Solar and Wind Energy meration - Application for cooling – Pumping – ton of wind flow – Propeller type converters – ters and other converters – Heat – Electrical on – Commercial wind power development.	converters. terials, Fuel prod version process chnique, reversib of energy conver eneration, stirling Solar electricity g Cross wind conv	rsion. uction from le and sion, energy g engine, (10 Hrs) generation - erters –
Unit – II	Pneumat	ion of Wave Energy ic converters – Oscillating wave converter – Co water – Conversation heat.	onversation of wa	(11 Hrs) ater flows –
Unit – III	Fuel cel biomass fuels – C	ion of Fuels and Biological Materials Technologies – Conversion of biological ma – Fuel production from biomass – Overviev Generation of Liquid Biofuels – Other Conversi Gradient Resources.	v and Generation	n of Gaseous
Unit – IV	Basics o Energy (– Carnot	f Energy Conservation Conservation - Conventional Technique – Rever - Stirling and Rankine cycle.	rsible and Irrever	-
Unit – V	Econom Conserv Combin Pipes - H	ction to Energy Conservation ic Concept of Energy – Principles of En ation Approach/ technologies – Co-generatio ed Cycle Power Generation – Heat Recuperator leat pumps – Stirling Engine – Instrumentation	on – Waste Heat rs – Heat Regene	utilization -
Kadambi, V. New A McCormick, T Oakey, J. (Ed Publish Oyedepo, S. <i>Packag</i> Woodh Quaschning, T	ukla. (2012) (2010). An ge internat M. E. (200 I.). (2015). hing. O. (2019) ging: Case head Publis V. V. (201	 B).Industrial bioprocess technology. DPH. introduction to energy conversation. Volume. 2 ional. 7). Ocean Wave Energy Conversion.Dover Pub Fuel flexible energy generation: Solid, liquid P). Energy Use and Energy Saving Potentia Study of Nigerian Industries. In Bottled and F hing. Doi: 10.1016/B978-0-12-815272-0.00015 9). Renewable energy and climate change. Wild 	blication Inc. and gaseous fue als in Food Pr Packaged Water (5-5. ey.	<i>ls</i> . Woodhead <i>ocessing and</i> pp. 423-452).
plannir	ng. Elsevie	newable energy: Physics, engineering, environ r. udents will be able to understand more infor	-	
Outcomes	 energy The str and pn The str materia conver The str 	conversion. Idents will be able to gain more information a eumatic converters. Idents will be able to understand about conv ils, Fuel production from biomass, generation sion process idents gain more knowledge about energy conse uue, reversible and irreversible cycles, carnot, st	bout wave energ version of fuel a n of liquid biofu ervation, conven	gy conversion nd biological els and other tional

	۶	The students will be able to acquire more information about economic concept of
		energy, principles of energy conversion, energy conservation technologies,
		combined cycle power generation, stirling engine, instrumentation and control.

Name: Dr. Anders Hagfeldt

Designation: Professor

Address: Department of Physical Chemistry,

Ecole Polytechnique Federale de Lausanne, EPFL, Switzerland. Phone: +41 (0)21 693 53 08

Email: anders.hagfeldt@epfl.ch

Educational qualification:

- Ph.D., Uppsala University, 1993.
- Post-doctoral fellow, EPFL, Lausanne, Switzerland, 1993 to 1994.
- M.S., Physics and Chemistry, Uppsala University, 1989.

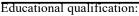
Professional experience:

- Visiting Professor, Institute of Materials Research and Engineering, Singapore, 2008.
- Professor chair in Physical Chemistry, Uppsala University, 2007.
- Visiting Professor, Dalian University of Technology, Dalian, China, 2006.
- Visiting Professor, Royal Institute of Technology, Stockholm, Sweden, 2005.
- Professor in Chemical Physics, Uppsala University, 2004.
- Associate Professor, Uppsala University, 2000 to 2004.

Honours and Awards:

- The Norblad-Ekstrand medal from The Swedish Chemical Society, Stockholm, 2009
- The Thuréus award from Royal Society of Sciences, Uppsala, 2008.
- The chemistry student's IUPAK award for best teacher, Uppsala, 1999
- The Benzelius award from Royal Society of Sciences, Uppsala, 1995

Recent publications:


- Buene, A. F., Hagfeldt, A., & Hoff, B. H. (2019). A comprehensive experimental study of five fundamental phenothiazine geometries increasing the diversity of the phenothiazine dye class for dye-sensitized solar cells. Dyes and Pigments, 169, 66-72.
- Tress, W., Domanski, K., Carlsen, B., Agarwalla, A., Alharbi, E. A., Graetzel, M., & Hagfeldt, A. (2019). Performance of perovskite solar cells under simulated temperatureillumination real-world operating conditions. Nature Energy, 1.
- Sivakumar, G., Bertoni, A. H., Kim, H. S., Marchezi, P. E., Bernardo, D. R., Hagfeldt, A. & Nogueira, A. F. (2019). Design, synthesis and characterization of 1, 8-naphthalimide based fullerene derivative as electron transport material for inverted perovskite solar cells. Synthetic Metals, 249, 25-30.

Total Citation: 79515 h- index: 129 i10- index: 439

Name: Dr. S. Karuppuchamy

Designation: Professor & Head Address: Department of Energy Science, Alagappa University, Karaikudi Tamilnadu, India Phone: . +91-4565223380, +91-9585459761 Email: skchamy@gmail.com

- Ph.D, Materials Engineering, Gifu University, Gifu, Japan, 2002.
- M.Sc., Chemistry, Madurai Kamaraj University, Madurai, India, 1996.
- B.Sc., Chemistry, Madurai Kamaraj University, Madurai, India, 1994.

Professional experience:

- Professor & Head, Alagappa University, Karaikudi, India, 5th March 2016 to till date.
- Associate Professor & Head, Alagappa University, Karaikudi, India, 4th March 2013 to 4th March 2016.
- Associate Professor, Kongu Engineering College, Erode, India, 01st July 2012 to 03rd March 2013.
- Senior Researcher, Kyushu Institute of Technology, Japan, 01st April 2011 to 30th June 2012.
- Scientific Advisor, TSM Co.Ltd, South Korea, 01st April 2009 to 30th March 2011
- Senior Scientist, Yokohama Rubber Co. Ltd, Japan, 01st Dec. 2006 to 31st March 2009.

Honours and Awards:

- Tamil Nadu Scientists Award (TANSA) award from Government of Tamilnadu, India, 2017.
- Alagappa Excellence Award for Research, Alagappa University, Karaikudi, India, 2016-2017.
- Best Researcher Award, EET CRS-17, India, 2017
- Young Scientist award, Department of Science and Technology, Government of India, 2013.
- Leading scientists of the World 2013, Int. Biographical Centre, Cambridge, UK, 2013.

Recent publications:

- Karuppuchamy, S., Murugadoss, G., Ramachandran, K., Saxena, V., & Thangamuthu, R. (2018). Inorganic based hole transport materials for perovskite solar cells. Journal of Materials Science: Materials in Electronics, 29(10), 8847-8853.
- Selvamurugan, M., Natarajan, C., Andou, Y., & Karuppuchamy, S. (2018). Synthesis and characterization of lithium titanate (Li₄Ti₅O₁₂) nanopowder for battery applications. Journal of Materials Science: Materials in Electronics, 29(20), 17826-17833.
- Kumar, R. D., Andou, Y., & Karuppuchamy, S. (2017). Facile synthesis of Co–WO 3/functionalized carbon nanotube nanocomposites for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 28(7), 5425-5434.
- Brundha, C., Govindaraj, R., Santhosh, N., Pandian, M. S., Ramasamy, P., & Karuppuchamy, S. (2017). Preparation of one dimensional titanium dioxide nanowires using electrospinning process for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 28(15), 11509-11514.

Total Citation: 2157 h- index: 30 i10- index: 53

Name: **Dr. P. Sakthivel** Designation: Professor Address: Department of Nano Science and Technology, Bharathiar University, Tamilnadu, India. Phone: +91-9677560890 Email: polysathi@gmail.com

Educational qualification:

- Ph.D., Chemistry– Polymers, Anna University, India, 2005.
- M.Phil. Chemistry, University of Madras, India, 2001.
- M.Sc., Chemistry, Govt. Arts and Science College, Coimbatore, India, 2000.
- B.Sc., Chemistry, Kandasamy Kandar College, Velur, India, 1998.

Professional experience:

- Professor, Bharathiar University, Coimbatore, India, from 25.11.2016 to till date.
- Associate Professor, VIT University, Vellore, India, from Sep. 2013 to Nov.2016.
- Assistant Professor (Senior), VIT University, Vellore, India Jul. 2009 to Aug. 2013.
- Contract Professor, Pusan National University, Korea, Mar 2008 to Feb 2009.
- Post Doctoral Fellow, Pusan National University, Korea, Sep 2006 to Feb 2008.
- Post Doctoral Fellow, Gyeongsang National University, Korea, Nov 2005 to Sep 2006. Honours and Awards:
 - Research Awards, VIT University, 2015.
 - Research Awards for project, VIT University, 2015.
 - CSIR Senior Research Fellowship, Anna University, India, 2002.

Recent publications:

- Ramki, K., Venkatesh, N., Sathiyan, G., Thangamuthu, R., & Sakthivel, P. (2019). A comprehensive review on the reasons behind low power conversion efficiency of dibenzo derivatives based donors in bulk heterojunction organic solar cells. Organic Electronics.
- Ramki, K., Venkatesh, N., Sathiyan, G., Thangamuthu, R., & Sakthivel, P. (2019). A comprehensive review on the reasons behind low power conversion efficiency of dibenzo derivatives based donors in bulk heterojunction organic solar cells. Organic Electronics.
- Ganesamoorthy, R., Vijayaraghavan, R., Ramki, K., & Sakthivel, P. (2018). Synthesis, characterization of bay-substituted perylene diimide based DAD type small molecules and their applications as a non-fullerene electron acceptor in polymer solar cells. Journal of Science: Advanced Materials and Devices, 3(1), 99-106.

Cumulative Impact factor: 102.169 Total Citation: 603 h- index: 14 i10- index: 17

Name: Dr.R. Thangamuthu

Designation: Principal Scientist Address: CSIR-Central Electrochemical ResearchInstitute Karaikudi - 630 003, Tamil Nadu, India. Phone: +91-4565-241350 & Mobile: 7598226041 Email: thangamuthu_r@yahoo.co.uk

Educational qualification:

- Ph.D., Physical Chemistry Electrochemistry, University of Madras, 2002.
- M.Phil., Chemistry, University of Madras, 1994.
- B.Ed., Physical Sciences, Annamalai University, 1991.
- M.Sc., Physical Chemistry, University of Madras, 1990.
- B.Sc., Chemistry University of Madras, 1987.

Professional experience:

Principal Scientist, Materials

Electrochemistry Division, Central Electrochemical Research Institute, Karaikudi, India,14th December 2009 to till date.

Honours and Awards:

- Post Doctoral Fellow, Dept. of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, 11th August 2006 to 2nd December 2009.
- •
- Post Doctoral Fellow, Dept. of Chemical Engineering, National Taiwan University of Science & Technology, Taipei, Taiwan, 1st August 2005 to 10th August 2006.
- Post Doctoral Fellow, Dept. of Chemical Engineering, National Yunlin University of Science & Technology, Taiwan, 13th September 2002 to 31th July 2005
- Post Doctoral Fellow, Centre for Energy Research (CER), SPIC Science Foundation (SSF), Guindy, Chennai-600 032, India, 19th April 2001 to 26th August 2002.

Recent publications:

- Selvakumar, K., Ulaganathan, M., Senthil Kumar, S. M., Thangamuthu, R., Periasamy, P., & Ragupathy, P. (2019). Electrospun Carbon Nanofiber Sprinkled with Co₃O₄ as an Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium. ChemistrySelect, 4(17), 5160-5167.
- Murugadoss, G., Thangamuthu, R., Kumar, S. M. S., Anandhan, N., Kumar, M. R., & Rathishkumar, A. (2019). Synthesis of ligand-free, large scale with high quality all-inorganic CsPbI₃ and CsPb₂Br₅ nanocrystals and fabrication of all-inorganic perovskite solar cells. Journal of Alloys and Compounds, 787, 17-26.
- Duraisamy, V., Palanivel, S., Thangamuthu, R., & Kumar, S.M.S. (2018). KIT-6 Three Dimensional Template Derived Mesoporous Carbon for Oxygen Reduction Reaction: Effect of Template Removal on Catalytic Activity. ChemistrySelect, 3(42), 11864-11874.

Total Citation: 2150 h- index: 25 i10- index: 50

Name: **Dr. M. Jeganmohan** Designation: Associate Professor, Address: Department of Chemistry, IIT Madras, Chennai, 600 036. Phone: +91-44-2257-4211; 8903159461 Email: mjeganmohan@iitm.ac.in

Educational qualification:

- Ph.D., Chemistry, National Tsing Hua University, Taiwan, 2005.
- M.Sc., Organic Chemistry, Madras University, India, 2001.
- B.Sc., Chemistry, St. Joseph's College, Madras University, India, 1998.

Professional experience:

- Associate professor, Indian Institute of Technology Madras, Chennai, India, October 2016 to till date.
- Associate professor, Indian Institute of Science Education and Research Pune (IISER Pune), India, April 2016 to September 2016.
- Assistant professor, Indian Institute of Science Education and Research Pune (IISER Pune), India, November 2010 to March 2016.
- Postdoctoral researcher, Alexander von Humboldt fellowship, Prof. Paul Knochel's group, Ludwig-Maximilians-Universität, Germany, November 2009 to Oct 2010,
- Postdoctoral researcher, National Science Council fellowship (NSC), Prof. Chien-Hong Cheng's group, National Tsing Hua University, Taiwan, August 2005 to July 2009.

Honours and Awards:

- ISCB Award of Appreciation for Chemical Science, CSIR-CDRI Lucknow, 2014.
- Alkyl Amines ICT Young Scientist Award by Institute of Chemical Technology Mumbai, India, 2013.
- Science Academy Medal for Young Scientists, Indian National Science Academy, New Delhi, India, 2013.
- Science Academy Medal for a young associate, Indian Academy of Sciences, Bangalore, India, 2012 2015.

Recent publications:

- Manoharan, R.; Jeganmohan, M. "Alkylation, Annulation and Alkenylation of Organic Molecules with Maleimides via Transition-Metal-Catalyzed C-H Bond Activation" Asian J. Org. Chem, 2019, DOI:10.1002/ajoc.201900054.
- Ramesh, B., Tamizmani, M., & Jeganmohan, M. (2019). Rhodium (III)-Catalyzed Redox-Neutral 1, 1-Cyclization of N-Methoxy Benzamides with Maleimides via C-H/N-H/N-O Activation: Detailed Mechanistic Investigation. The Journal of organic chemistry, 84(7), 4058-4071.
- Sihag, P., & Jeganmohan, M. (2019). Regioselective Synthesis of Isocoumarins via Iridium (III)-Catalyzed Oxidative Cyclization of Aromatic Acids with Propargyl Alcohols. The Journal of organic chemistry, 84(5), 2699-2712.

Total Citation: 3719 h- index: 38