

DEPARTMENT OF BIOELECTRONICS AND BIOSENSORS

M.Sc., MATERIAL SCIENCE

[Choice Based Credit System (CBCS)] [For the candidates admitted from the academic year 2019 -2020]

ChairpersonDr. C. Sekar, Professor And Head, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi. AreasofExpertise Materials Science: Metal Oxide Semiconductors, Carbon Nanostructures, Biomaterials, Low DimensionalCuprates Sensors: Chemical Sensors, Biosensors for Medical, Food, Agricultural and EnvironmentalApplicationsForeign Experts	
Dr. Giovanni Neri, Professor, Department of Engineering, University of Messina. Italy. Areas of Expertise Catalysis, Gas Sensors, Biosensors.	
Dr. Subramainan Tamil Selvan, Professor, Translational Neuroscience Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921. Email:subra.selvan@ntu.edu.sg. Areas ofExpertise:Nanomedicine, Bioimaging, Nanoparticle, Quantum Dots, Energy.	
Dr. Nanda Gunawardhana, Professor, Sri Lanka Technological Campus, New Kandy Rd, Malabe 10115, Sri Lanka. Email: nandhag@sltc.ac.ik. Areas ofExpertise:Capacitors, Gas Sensors, Nanomaterials, LIBs.	
Indian Experts Dr. P. Ravindran, Professor, Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur-610 101. Areas of Expertise: Nanophase Materials, Mofsandother Nano/Micro/Measo-Porous Materials, Hydrogen Storage & Battery Materials, Solar Energy Materials Including Transparent Conducting Oxides, Defects in Semiconductors, Linear, Nonlinear Optical Properties andother Excited State Properties, Magneto-Optical and Magneto-Caloric Materials., Magnetic Properties, Magnetic Anisotropy, Spin, Charge and Orbital Ordering, Multi-Ferroicandother Multifunctional Materials, Structural Phase Stability and High Pressure Studies.	
Dr. K. Chinnakali, Professor, Plot No.28, Ram Nagar First Street - North Extn, Velachery Chennai 600042. Areas ofExpertise:X-Ray Crystallography, Materials Science.	
Dr. S. Arumugam,, Professor, Centre For High Pressure Research, Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli - 620 024, Tamil Nadu, India. Areas ofExpertise: X-Ray Crystallography, Magnetism.	
National Laboratories Experts Dr. Pratima R. Solanki, Assistant Professor, Special Centre For Nanoscience, Jawaharlal Nehru University,New Delhi, 110 067. Areas ofExpertise:Nano Biosensors, Nano Bio-Interface.	
Dr. N. Lakshminarasimhan, Scientist, Functional Materials Division, CSIR-Central Electrochemical Research, Institute, India. Email:laksnarasimhan@cecri.res.in. Areas of Expertise : Solid State Chemistry and Materials Science, Photo functional Materials - Phosphors, Photocatalysts, Transparent Conductors, Materials for Energy Conversion and Storage, Structure-Morphology-Property Correlations in Nanomaterials and Photofunctional Materials	

Dr. J. Mathiyarasu, Principal Scientist, Biosensors Division, CSIR-Central Electrochemical Research Institute, India. Email:almathi@cecri.res.in. Areas ofExpertise: Electrochemical Biosensors.

<u>Special Invitee</u> Dr. J. Jeyakanthan, Professor and Head, Department of Bioinformatics, Alagappa University Karaikudi – 630 003, Tamil Nadu, India. Email:jjkanthan@gmail.Com. Areas ofExpertise: Structural Biology and Bio-Computing, Small and Macro Molecule X-Ray Crystallography.

Dr.K.Gurunathan, Professor and Head, Department of Nanoscience and Technology, Alagappa University, Karaikudi – 630 003, Tamil Nadu, India. Email: kgnathan27@Rediffmail.Com. Areas of Expertise : Hydrogen Energy, Photo catalysisandPhoto electrochemistry, Nano (Quantum Dots &Core-Shell Solar Cells), Flexible (Plastic) Solar Cells, Nanomaterials for Electronics and Power Sources, Conducting Polymers and Their R-GO-MO-Nanocomposites, Nano Magnetism (Core-Shell Magnetic Materials For MRI), Nano Toxicology & Phytochemical Synthesis of Nanomaterials

Dr. Jitendra Kumar, Scientific Officer, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai. Email:jkumar@barc.gov.in. Areas ofExpertise: Biosensors.

Members

Dr. G. Ravi, Professor andHead, Department of Physics, Alagappa University, Karaikudi – 630003, Tamil Nadu,India. Email:raviganesa@rediffmail.com. Areas ofExpertise: Crystal Growth of Organic & InorganicMaterials, Nano Materials Synthesis and Thin Films Preparation for Supercapacitors, Photocatalytic and SensorApplications, Opto-Electronics and E-O Modulator–Devices.

Dr. K.Sankaranarayanan, Professor, Department of Physics, Alagappa University, Karaikudi – 630003, Tamil Nadu,India. Email:hhrsankar@yahoo.com. Areas ofExpertise: MaterialsScience, Crystallization Kinetics of Organic and InorganicMaterials. Unidirectional Growth of Bulk Organic and InorganicCrystals. III-V Semiconductor Materials – Synthesis AndGrowth.

Dr. V. Dharuman, Assistant Professor, Department ofBioelectronicsand Biosensors, Alagappa University, Karaikudi – 630003, Tamil Nadu,India.Email:dharumanudhay@yahoo.com. Areas of Expertise: Chemistry/Electrochemistry/ Diabetic, Cancer Biosensors Development using, DNA, Antibody (Immunosensors) and Neurological Disorder Sensors.

Dr. J. Wilson, Assistant Professor, Department OfBioelectronics& Biosensors, Alagappa University, Karaikudi – 630003, Tamil Nadu,India.Email:wilson.J2008@yahoo.com.Areas of Expertise: Conducting Polymers, Metal Oxides, Carbon Based Materials, Biosensors, and Lithium Batteries.

<u>Alumni</u>

Dr. N. Sudhan, Assistant Professor, Department of Chemistry, Thiyagarajar College Madurai, India. Email:sudhamadhu@gmail.com. Areas of Expertise: Chemo-Biosensors, DNA Microarray, Gold Nanorods.

CONTENTS

- I. Introduction
- II. Objectives of the Programme
- III. Eligibility for Admission
- IV. Programme outcomes
- V. Programme Specific Outcomes (psos)
- VI. Duration of the Programme
- VII. Courses of Study
- VIII. Semesters
- IX. Teaching Methodologies
- X. Examinations
- XI. Scheme of Examinations
- XII. Condonation
- XIII. Question Paper Pattern
- XIV. Evaluation
- XV. Village Placement Programme
- XVI. Passing Minimum
- XVII. Classification of Successful Candidates
- XVIII. Maximum Duration for the Completion of Programme
- XIX. Commencement of this Regulation
- XX. Code and Grading
- I. Introduction

M.Sc. Materials Science

Physics – the study of matter, energy and their interactions - is an exciting intellectual adventure that inspires young people and expands the frontiers of our knowledge about nature. Physics is the most basic of the physical sciences from and geology and chemistry to biology and cosmology. We understand science in terms of the concepts developed in physics. The interests and concerns of physicists have always formed the basis of future technology. Physics can play an important role in developing strategies to combat climate change, in the development of cleaner energies, and in the development of technological advancement. Physics and technology must work together to resolve the need for new technologies that will decrease the damage to our planet, the need for solutions to deadly diseases that remain a threat, and need for solutions to the increasing demands we place on our resources before they are depleted.

The role of physics in our modern world is more important than in any other time in history. Physics extends and enhances our understanding of other disciplines, such as the earth, agricultural, chemical, Biological and environmental sciences, plus astrophysics and cosmology – subjects of substantial importance to all peoples of the world. Physics contributes to the technological infrastructure and provides trained personnel needed to take advantage of interdisciplinary subjects like nanotechnology, biotechnology, bioelectronics and biosensors.

Biosensor is an interdisciplinary area currently makes revolution in all fields of science and technology. Application of fundamentals of physics and chemistry together to correlate biological behavior at nanoscale is essential to understandand prevent the biological system damage and to control of progressive diseases. Students need to understand the principles and applications of biosensing technology for the development of nanoscale sensor devices to monitor the disease state. Hence, courses pertaining to the biosensing technology is introduced in the first semester. During this period, students will learn about materials being used in fabricating nanoscale sensing devices with special attention to semiconductor technology. Further knowledge on types of biosensors, molecule based electronic devices and nanodevice applications for monitoring electrical properties of system biology. In the second semester, a spectrum of bioanalytical techniques available for biosensing will be taught. Third semester imparts basic and applied knowledge of electrical and optical based biosensing techniques as a core course. In the fourth semester, students will learn recent advancements in nanoelectronics based on molecular transducers and their applications in biosensing and other areas of nanoelectronics.

VISION

Department of Bioelectronics and Biosensors at Alagappa University shall strive towards the world class centre by producing students with higher technical knowledge, professional skills and other values. The Department shall provide an outstanding experience in teaching, research and consultancy. The Department shall perform frontier research and create knowledge base in physics, materials science, bioelectronics, biosensors and other relevant areas of technological importance.

MISSION

Department Bioelectronics and Biosensors at Alagappa University shall provide high quality physics education, producing well prepared students who are intellectually and technically equipped in their abilities and understanding of physics and in particular materials science and its application in the areas ofbiosensors. The Department of Bioelectronics and Biosensors promotes high quality academic and research programmes and providing extension services in cutting edge technologies in materials science and biosensors. The Department of Bioelectronics and Biosensors ensures the conducive campus climate in academic and research activities by meeting the need of the students, faculty and staff.

II. Objectives of the Programme

The major objectives of M.Sc. Materials Science are set as follows:

- To provide thorough theoretical and experimental courses in various branches of Physics and to make the students aware of the applied aspects of physics in the area of bioelectronics and biosensors.
- To develop abilities and skills that are relevant to the study and practice of physics, materials science and sensors, useful in everyday life
- To develop attitudes relevant to science such as concern for accuracy and precision, objectivity, integrity, enquiry, initiative and inventiveness.

III. Eligibility for Admission

A candidate who has passed B.Sc., Degree Examination with Physics or Applied Physics or Applied Science as main course of study of any University accepted by the syndicate as equivalent thereto, subject to such condition as may be prescribed there for shall be permitted to appear and qualify for the M.Sc. Degree in Materials Science of this University after a course of study for two academic years.

IV.Programme outcomes

After going through the two years of study, our Materials Science Post-Graduates will exhibit ability to:

S.No.	Graduate	Programme Outcome
1.	Research aptitude	An ability to independently carry out research/ investigation
		and development work to solve practical problems
	Technical	An ability to write and present a substantial technical
2.	documentation	report/document
3.	Technical competence	Students should be able to demonstrate a degree of
		mastery over the area as per the specialization of the
		Program. The mastery should be at a level higher than the
		requirements in the appropriate bachelor program
4.	Modern Tool Usage	Students will develop and demonstrate an ability to work
		in laboratory, conduct experiments, visualize data and
		Interpret the results.
5.	Impact in society	Students will show the understanding of impact of
		materials in the society and also will be aware of
		Contemporary issues.
6.	Ethical responsibilities	Students will demonstrate knowledge of professional and
		Ethical responsibilities.

V. Program Specific Outcomes (Psos):

By the completion of the Materials Science program the student will have following Program specific outcomes.

- 1. To select materials as per needs and specifications and process them.
- 2. To develop new materials for specific applications and characterize them.
- 3. To develop new materials with required physical properties.
- 4. To analyze the functioning of devices made with novel materials.

VI. Duration of the Programme

The Master of Science in Materials Science shall consist of two academic years divided into four semesters. Each semester consists of 90 working days.

L I	rogramm				1		
No.	Course	Title of the Course	No. of Credits	Hours/ Week		Mar	ks
	Code	I SEMESTER	Creans	vv eek	T	Е	Total
1	542101	Mathematical Physics	4	4	25	12 75	10 ta 100
2	542101	Classical Mechanics and Statistical	4	4	25	75	100
2	542102	Thermodynamics	4	4	23	15	100
3	542103	Electronics and Instrumentation	4	4	25	75	100
4	542103	Electromagnetic Theory and Optics	4	4	25	75	100
5	542104	Program Elective I	3	3	25	75	100
<u> </u>	542105	Lab-I Materials Science	3	6	25	75	100
U	542105	Library/Yoga/ Counseling/ Soft Skill	5	5	25	15	100
		Library/10ga/Counsening/Soft Skin	22	<u> </u>	150	450	600
		II SEMESTER	22	30	150	430	000
7	542201	Numerical Methods for Materials Science	4	4	25	75	100
7 8	542201	Characterization of Materials	4	4	25	75	100
<u> </u>	542202	Quantum Mechanics	4	4	25	75	100
	542203		4	4	25	75	100
10 11	342204	Physics of Materials Program Elective II	3	4	25	75	100
	542205		_				
12	542205	Lab-II Bio-Materials Science	3	6	25	75	100
13		Non-Major Elective course - I	2	3	25	75	100
14		Self-learning course (SLC) –MOOCs		Extra credi	its		
		Library/Yoga/ Counseling/ Soft Skill/Seminar		2			
		Skiii/Seminar	21	20	175	525	700
			24	30	175	525	700
15	542201	III SEMESTER Fundamentals of Nanoscience &	4	4	25	75	100
15	542301	Technology	4	4	25	75	100
16	542302	Polymer and Composite Materials	4	4	25	75	100
10	542302	Solid State Physics	4	4	25	75	100
17	342303	Program Elective II	3	4	25	75	100
10	542304	Lab-III Nano Materials; Mini Project	3	6	25	75	100
20	542504	•	2	3	25	75	100
20		Non-Major Elective course -II Self-learning course (SLC) –MOOCs	<i>L</i>	Extra credi		15	100
41		Library/Yoga/ Counseling/ Soft		Extra credi			
		Skill/Seminar		U			
		SKII/SCIIIIIai	20	30	150	450	600
		IV SEMESTER	20	30	150	430	000
22	542401		3	3	25	75	100
22	542401	Molecular Spectroscopy	3	3			100
23		Program Elective IV			25	75	100
24		Program Elective V	3	3	25	75	100
25	5 40000	Open Elective	3	3	25	75	100
26	542999	Dissertation	12	18	25	75	100
		Library/Yoga/ Counseling/ Soft Skill			10-	077	7 00
			24	30	125	375	500
		TOTAL CREDIT	90	120			

VII. Courses of Study: M.Sc. Materials Science (2019-20 onwards)-CBCS - Structure of the Programme

Sl. No	Paper Code	Semester	Title of the paper	Crédits	Hours/ Week	Ma	rks	
						Ι	Ε	Т
1	542701	П	Electronics for Daily Life	2	3	25	75	100
2	542702	Π	Food Chemistry	2	3	25	75	100
3	542703	III	Nanobiosensors	2	3	25	75	100
4	542704	III	Green Chemistry	2	3	25	75	100

Non-Major Elective-Courses offered to the other Department to other Departments

ELECTIVE COURSES

Ite of the CourseCreditsISEMESTER1542501322542502Molecular Electronics33542503Non-Destructive Testing34542504Nonlinear Optics and Materials35542505Laser and Applications36542506Python Programming3IISEMESTER7542507Semiconductor Materials and Devices38542508Advances in Crystal Growth39542509Materials Processing3	Contact
1542501Biomaterials32542502Molecular Electronics33542503Non-Destructive Testing34542504Nonlinear Optics and Materials35542505Laser and Applications36542506Python Programming3IISEMESTER77542507Semiconductor Materials and Devices38542508Advances in Crystal Growth39542509Materials Processing3	Hours
2542502Molecular Electronics33542503Non-Destructive Testing34542504Nonlinear Optics and Materials35542505Laser and Applications36542506Python Programming3IISEMESTER7542507Semiconductor Materials and Devices38542508Advances in Crystal Growth39542509Materials Processing3	
3542503Non-Destructive Testing34542504Nonlinear Optics and Materials35542505Laser and Applications36542506Python Programming3IISEMESTER7542507Semiconductor Materials and Devices38542508Advances in Crystal Growth39542509Materials Processing3	3
4542504Nonlinear Optics and Materials35542505Laser and Applications36542506Python Programming3IISEMESTER37542507Semiconductor Materials and Devices38542508Advances in Crystal Growth39542509Materials Processing3	3
5542505Laser and Applications36542506Python Programming3IISEMESTER7542507Semiconductor Materials and Devices38542508Advances in Crystal Growth39542509Materials Processing3	3
6542506Python Programming3IISEMESTER7542507Semiconductor Materials and Devices38542508Advances in Crystal Growth39542509Materials Processing3	3
II SEMESTER7542507Semiconductor Materials and Devices38542508Advances in Crystal Growth39542509Materials Processing3	3
7542507Semiconductor Materials and Devices38542508Advances in Crystal Growth39542509Materials Processing3	3
8542508Advances in Crystal Growth39542509Materials Processing3	
9542509Materials Processing3	3
6	3
	3
10542510Nanoelectronics and Photonics3	3
11542511Corrosion Science and Engineering3	3
12 542512 Solid State Ionics 3	3
III SEMESTER	
13542513Bioelectronics3	3
14542514Chemical Sensors3	3
15542515Thin Film Science and Technology3	3
16542516Nanomaterials Preparation and Characterization3	3
17542517Ceramic Materials3	3
18542518Physical Metallurgy3	3
19542519Superconducting Materials and Applications3	3
IV SEMESTER	
20542520Nanobioelectronics3	3
21542521High Pressure Science and Technology3	3
22542522Optical Materials3	3
23 542523 Biosensors 3	3
24542524Composite Materials and Structures3	3
25 542525 Nuclear Physics and Reactor Materials 3	3
26542526Smart Materials and Structures3	3

VIII. Semesters

An academic year is divided into two semesters. In each semester, courses are offered in 18 teaching weeks including the duration of conduct of internal examination. Each week has 30 working hours spread over 5 days a week.

IX. Teaching Methodologies

The classroom teaching shall be through conventional lectures and use of Power Point and YouTube presentations. The lecture shall be such that the student should participate actively in the discussion. Student seminars would be conducted and scientific discussions would be arranged to improve their communicative skill. In the laboratory, instruction shall be given for the experiments followed by demonstration and finally the students have to do the experiments individually. Periodic tests would be conducted and special attention shall be given to the slow learning students.

X. Examinations

The examination shall be three hours duration to each course at the end of each semester. The candidate failing in any course(s) will be permitted to appear for each failed course(s) in the subsequent examination. Practical examinations for M.Sc. programme in Materials Science shall be conducted at second and third semesters. At the end of fourth semester viva-voce will be conducted on the basis of the Project report submitted by the student. One internal and one external examiner will conduct the viva-voce jointly.

No.	Course	Title of the Course	No. of	Contact	Marks		
190.	Code	The of the Course	Credits	Hours		WIAINS	
	I SEMESTER				Ι	Ε	Т
1		Mathematical Physics	4	4	25	75	100
2		Classical Mechanics and Statistical Thermodynamics	4	4	25	75	100
3		Electronics and Instrumentation	3	4	25	75	100
4		Electromagnetic Theory and Optics	4	4	25	75	100
5		Program Elective I	3	3	25	75	100
6		Lab-I Materials Science	3	6	25	75	100
		Library/Yoga/ Counseling/ Soft Skill		5			
			22	30	150	450	600
		II SEMESTER					
7		Numerical Methods for Materials Science	4	4	25	75	100
8		Characterization of Materials	4	4	25	75	100
9		Quantum Mechanics	4	4	25	75	100
10		Physics of Materials	4	4	25	75	100
11		Program Elective II	3	3	25	75	100
12		Lab-II Biomaterials Science	3	6	25	75	100
13		Non-Major Elective course - I	2	3	25	75	100

XI. Scheme of Examinations

	Library/Yoga/ Counseling/ Soft Skill		2			
		24	30	175	525	700
•	III SEMESTER					
14	Fundamentals of Nanoscience & Technology	4	4	25	75	100
15	Polymer and Composite Materials	4	4	25	75	100
16	Solid State Physics	4	4	25	75	100
17	Program Elective III	3	3	25	75	100
18	Lab-III Nanomaterials; Mini Project	4	6	25	75	100
19	Inter-Departmental Course	3	3	25	75	100
	Library/Yoga/ Counseling/ Soft Skill		6			
		20	30	150	450	600
	IV SEMESTER					
20	Molecular Spectroscopy	3	3	25	75	100
21	Program Elective IV	3	3	25	75	100
22	Program Elective V	3	3	25	75	100
23	Open Elective	3	3	25	75	100
24	Dissertation	12	18	25	75	100
	Library/Yoga/ Counseling/ Soft Skill					
		24	30	125	375	500
	TOTAL CREDIT	90	120			

XII. Condonation

Student must have earned 75% of attendance in each course for appearing for the examination. Students who have earned 74% to 70% of attendance have to apply for condonation in the prescribed form with prescribed fee. Students who have earned 69% to 60% of attendance should apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students who have attended below 60% are not eligible to appear for the examination and they shall re-do the semester after completion of the programme, with the prior permission of the Registrar of the University.

XIII. Question Paper Pattern

M.Sc. Materials Science(2020-21 onwards)

XXX: Course title Time: 3 Hours

Max. Marks - 75

PART A: Answer all questions. All questions carry equal marks. $(10 \times 2 = 20 \text{ marks})$ Two questions should be problem oriented.

There will be 10 Questions covering the entire syllabus viz. 2 from each Unit (I to V)

PART B: Answer all questions either (a) or (b). $(5 \times 5 = 25 \text{ marks})$ One either or question should be problem oriented.

11. (a) or (b) from UNIT I

12. (a) or (b) from UNIT II 13. (a) or (b) from UNIT III 14. (a) or (b) from UNIT IV 15. (a) or (b) from UNIT V

PART C: Answer any three questions. $(3 \times 10 = 30 \text{ marks})$ 16. from UNIT I 17. from UNIT II 18. from UNIT III 19. from UNIT IV 20. from UNIT V

XIV. Evaluation

--

The performance of a student in each course is evaluated in terms of percentage of marks with a provision for conversion to grade points. Evaluation for each course shall be done by continuous internal assessment (CIA) by the concerned course Teacher as well as by an end semester examination (ESE) and will be consolidated at the end of the course. The components for continuous internal assessment are:

Two tests	- 15 marks (Third /repeat test for genuine absentees)
Seminar/Quiz	- 05 marks
Assignment / field trip report	rt
/case study report.	- <u>05 marks</u>
	<u>25 marks</u>
A 4	

Attendance need not be taken as a component for continuous assessment, although the student should put in a minimum of 75% attendance in each course. In addition to continuous evaluation component, the end semester examination, which will be a written examination of at least 3 hours duration, would also form an integral component of the evaluation.

The ratio of marks to be allotted to continuous internal assessment and to end semester examination is 25:75. The evaluation of laboratory component, wherever applicable, will also be based on continuous internal assessment for 25 marks and an end-semester practical examination for 75 marks.

- -

Distribution of marks for practical examinations (CIA marks 25 + ESE 75 marks)						
CIA	Marks					
Two Model Practical exams	25					
ESE	Marks					
Circuit Diagram / Diagram / Earmula	$\sqrt{T_{ablac}}$ 10					

Circuit Diagram / Diagram / Formula / Tables	10	
Observation	20	
Results	20	
Viva – voce in practical	15	
Record Note	10	
Total	75	
XIII. Project Work		
Project Work: 100 marks		
Periodic Presentation of Learning		25 marks
Concise Project		50 marks
Viva-voce		25 marks

(a) Plan of Work:

The student should prepare plan of work for the project, get the approval of the guide and should be submitted to the University during the fourth semester of their study. In case the student wants to avail the facility from other University/laboratory, they will undertake the work with the permission of the guide and HOD and acknowledge the alien facilities utilized by them. The duration of the project research shall be a minimum of three months in the fourth semester.

(b) Project Work outside the Department:

In case the student stays away for work from the Department for more than one month, specific approval of the HOD should be obtained.

(c) No. of copies/distribution of project work:

The students should prepare three copies of project work in bound volume and submit the same for the evaluation by Examiners. After evaluation one copy is to be retained in the Department library and one copy for guide and one copy for the student.

(d)Format to be followed:

The format/certificate for project to be submitted by the student is given below: Format for the preparation of project work:

- (a) Title page
- (b) Bonafide Certificate
- (c) Acknowledgement
- (d) Table of contents

CONTENTS

Chapter No.	TITLE	Page No.
1.	Introduction	
2.	Review of Literature	
3.	Materials and Methods	
4.	Results and Discussion	
5.	Summary	
6.	References	

Format of the Title Page:

TITLE OF THE PROJECT

Project Submitted in partial fulfillment of the requirement for the Degree of Master of Science in MATERIALS SCIENCE to the Alagappa University, Karaikudi -630 003.

By

Students Name: Register Number: Under the Guidance of

(Faculty Name) **University Emblem** Department of Bioelectronics & Biosensors Alagappa University Month and Year

Format of Declaration of the Candidate:

Name and class of the student

DECLARATION

I hereby declare that the Project entitled ________ submitted to ALAGAPPA UNIVERSITY for the award of the degree of MASTER OF SCIENCE is my original work and that it has not previously formed the basis for the award of any degree, diploma/associateship or any other similar title of any other University or Institution.

Signature of the Student

Signature of HOD

Format of the Certificate:

CERTIFICATE

Date:

Signature of the Guide

Place:

Guidelines for approval of M.Sc. Materials Science guides for guiding students in their research for submitting project work:

1. A person seeking for recognition as guide should have Ph.D. Degree in Science discipline (or) M.Phil., / M.Sc. degree in Science with first class/second class should have 3 years of active teaching/research experience. They should have published at least one research paper in a National/International Journal authored solely or jointly.

- 1. Procedure for submitting application for approval as guides:
 - (i) The University shall on request give prescribed application form.
 - (ii) The filled in applications should be submitted before the close of said date by the University.
 - (iii) All such applications should be routed through the HOD with specific recommendations.
 - (iv) All relevant proofs should be submitted along with the applications. The committee constituted for the purpose will scrutinize the applications and recommend for

approval/rejection. Orders will then be passed by the authority of the University and communicated to each member individually through the HOD.

XV. Village Placement Programme (VPP)

The SivagangaandRamnad districts are backward districts, where a majority of the people lives in poverty. The rural mass is economically and educationally backward. Thus the aim of the introduction of this Village Placement Programme (VPP) is to extend outreach programs in environmental awareness, hygiene and health to the rural masses of this region. The students in their third semester have to visit any one of the villages within the jurisdiction of Alagappa University and can arrange various programmes to educate the rural masses in the following areas for three days.

1. Environmental awareness 2. Hygiene and health

A minimum of two faculty members can accompany the students and guide them. This course is a compulsory one for all the students of the Department of Bioelectronics and Biosensors, Alagappa University.

XVI. Passing Minimum

The candidate shall be declared to have passed the examination if the candidate secures a minimum of 50 % in the University external examination and 50% of the total (Int+Ext) marks.

For the project work and viva-voce, a candidate should secure 50% of the marks for pass. The candidate should compulsorily attend viva-voce examination to secure pass in that course.

Candidate who does not obtain the required minimum marks for a pass in a course/Project Report shall be required to reappear and pass the same at a subsequent appearance.

XVII. Classification of Successful Candidates

Candidates who secure not less than 60% of the aggregate marks in the whole examination shall be declared to have passed the examination in First class. All other successful candidates shall be declared to have passed in the Second class.

Candidates who obtain 75% of the marks in the aggregate shall be deemed to have passed the examination in First class with Distinction provided they pass all the examinations prescribed for the course at the first appearance.

Candidates who pass all the examinations prescribed for the programme in the first instance and within a period of two academic years from the year of admission to the programme only are eligible for University Ranking.

A candidate is deemed to have secured first rank provided he/she

- (i) should have passed all the courses in first attempt itself
- (ii) should have secured the highest overall grade point average (OGPA)

XVIII. Maximum Duration for the Completion of the Programme

The maximum duration for completion of M.Sc. Degree in Materials Science Programme shall not exceed FOUR semesters.

XIX. Commencement of this Regulation

These regulations shall take effect from the academic year 2020-2021 i.e., for students who are to be admitted to the first year of the programme during the academic year 2020-2021 and thereafter.

XX. Code and Grading

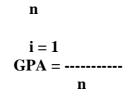
Legend

M.Sc. Materials Science

Once the marks of the CIA and end-semester examination for each of the courses are available, they will be added. The marks, thus obtained will then be graded as per the scheme provided in Table 1.

Table 1: Grading of the Courses

Marks	Grade Point	Letter Grade
96 and above	10	S+
91 - 95	9.5	S
86-90	9.0	D++
81 - 85	8.5	D+
76 - 80	8.0	D
71 – 75	7.5	A++
66 - 70	7.0	A+
61 - 65	6.5	A
56 - 60	6.0	В
50 - 55	5.5	С
Below 50	0	F


From the second semester onwards the total performance within a semester continuous performance

starting from the first semester is indicated respectively Grade Point Average (GPA) and

Cumulative Grade Point Average (CGPA).

These two are calculated by the following formula.

ΣCi Gi

ΣСі

i = 1

Where 'Ci' is the Credit earned for the course 'i' in any semester; 'Gi' is the Grade Point obtained by the student for the course 'i' and 'n' is the number of courses **passed** in that semester. **CGPA** (Cumulative Grade Point Average) = Average Grade Point of all the Courses starting from the first semester to the current semester.

M.Sc. Materials Science

(Regular Programme)

Curriculum (2020-2021 onwards)

under

Choice Based Credit System

		I Semester							
Course code	MATHEMATICAL PHYSICS Credits: 4 Hours: 4								
Objectives	□ To introduce the students to understand the vector calculus and matrices.								
		the students to understand the special function	s.						
		the student to study the complex variables.							
	□ To involve the student to learn the integral transform.								
	□ To educate the students to develop the understanding partial differential equation and								
	group theory.								
Unit -I	VECTOR CALCULUS AND MATRICES - Introduction to vectors and Product of								
	vectors - Gradient, Divergence, Curl - Vector operators in curvilinear coordinates								
	Gauss, Green and Stokes theorems - Applications - Introduction to Matrix -								
	properties o	f Matrix – Rank of Matrix - Eigenvalue proble	m - Diagonalizati	on - solving					
	differential	equations.	-	_					
Unit-II	SPECIAL	FUNCTIONS - Beta and Gamma functions - H	Bessel, Legendre	andHermite,					
	functions a	nd their properties-Series solutions - Recur	ence relations -	Rodrigue's					
		rthogonality, Generating functions – Application		-					
Unit III		OF COMPLEX VARIABLES - Functions of							
		onditions-Analytic functions -Conformal ma	•	•					
		nd Integral Formula -Taylor's and Laurent's s	11 0						
	Poles and Residues-Residue theorem - Contour integration.								
Unit IV		L TRANSFORMS - Fourier transform-prop		of simple					
	functions and derivatives-Convolution theorems – Applications - Laplace's transform –								
	properties -Transform of simple functions and derivatives-periodic functions-								
	Convolution theorem-Application to solve differential equation.								
Unit V		DIFFERENTIAL EQUATIONS AND GRO		Transverse					
		a string - Wave equation - One dimensional							
		Two dimensional heat flow - Laplace's equation							
		Definition of group - symmetry elements							
		on - Orthogonality theorem – Physical applicati							
Reference and			one of Broup mos						
		thematical Physics. Vikas Publishing House Pv	t. Ltd.						
		Mathematical Physics. Sultan Chand& Sons.							
		atical Physics. Addison Wesley, New York.							
	S. (2015). Higher Engineering Mathematics, Khanna Publishers.								
		anced Engineering Mathematics. Wiley.							
	and Harvill L.R. (2014). Applied Mathematics for Engineers and Physicists. Dover								
Publication	ns Inc.		-						
Outcomes	At the end of	f the course, the student should be able to							
		videas of vector calculus and matrices to physic	s problems.						
		the physics problems with special formula.	-						
		use of complex variable to solve integrals.							
	Use integral transform in physics and optics.								
		e the partial differential equation to boundary va	alue problems.						

	I Semester									
Course code	le CLASSICAL MECHANICS AND Credits: 4 Hou									
	STATISTICAL THERMODYNAMICS									
Objectives	To develop familiarity with mechanical aspects of syst	tems and mathematical								
	methods of Classical Mechanics.	of the modernamica its								
	To make the students understand the concepts laws applications and phase equilibria.	of thermodynamics its								
	To make the students understand the statistical mechanics of systems, probability									
	distribution laws.	or systems, proceeding								
	\Box To enable the students to understand the applications of statistical thermo									
	dynamical methods in solid state physics.									
	To make the students understand the basic concepts of heat and mass transfer and									
	its application in hydrodynamics.									
Unit -I	LAGRANGIAN AND HAMILTONIAN DYNAMICS-Mecha	0								
	system of particles - Conservation laws – Constraints - Generalised coordinates -Virtual									
	work - D'Alembert's principle – Lagranges equation of motion– Hamilton's equations of motion -Euler Lagrange equation - Princ	-								
Unit-II	CANONICAL TRANSFORMATION, BRACKETS A									
	Canonical transformation – Generating functions - Poisson brack									
	- Relation between Lagrange and Poisson brackets-Jacobi									
	dynamics: Euler's anglesAngular velocity – Principal mon	••••								
		ient of mortia femetic								
Unit III	energy. THERMODYNAMICS- Laws of thermodynamics- intern	al energy Enthelmy								
	Entropy- Helmholtz and Gibbs free energies – Thermodynamics-									
	equation – Maxwell's relations and applications – Chemical Pot									
	– phase equilibria (single and multicomponent systems) - Clausi	-								
	– law of mass action – first order phase transition in single comp	•								
	order phase transition.									
Unit IV	CLASSICAL AND QUANTUM STATISTICS - Micro and M	acro States - Ensembles								
	- Microcanonical, canonical and grand canonical ensembles - Maxwell - Boltzmann,									
	Bose- Einstein and Fermi-Dirac statistics – Comparison of MB,	BE and FD statistics.								
Unit V	APPLICATION OF STATISTICS - Planck's Radiation law -	Stefan-Boltzmann law –								
	Einstein model of a solid – Bose condensation – Classical partitie	on function and								
	classical ideal gas – Equipartition theorem – Semiconductor stati	stics – Statistical								
	equilibrium of electrons in semiconductors.									
Reference and										
	3. (1966). <i>Thermodynamics</i> . John Wiley and Sons.									
Engel. 1. a Edu.	and Reid.P. (2007). Thermodynamics, Statistical Thermodynamics	& Kinetics, Pearson								
	H. PooleC.P. andSafko.J. (2017). Classical Mechanics. Pearson E	ducation Inc								
	C. (1993). Statistical Thermodynamics. Wiley Eastern Ltd.	ducution, me.								
•	P. (2008). Heat transfer. Tata McGraw Hill.									
RanaN.C.	andJoag.P.S. (2017). Classical Mechanics. McGraw Hill Educatio	n.								
	010). Fundamentals of Statistical and Thermal Physics. Waveland	Press.								
· · ·	aJ. C (2005). <i>Classical Mechanics</i> . Himalaya Publishing House.	f . 1								
Outcomes	Students have gained knowledge in mathematical methods namely Newtonian mechanics, Lagrangianand Hamiltonian									
	Students have learned the laws of thermodynamics, thermo									
	applications, phase equilibria and phase transitions.	<i>a</i> _j hume relations, its								
	Students have understood the concepts of ensembles and le	earned to derive the								
	statistical distribution laws.									
	□ Students have learned to apply the statistical distribution la	ws to problems in solid								
	state physics.									
	Students have understood the basic concepts of heat and m									
	equations governing them and its application in hydrodynamics.									

	I Semester							
Course code	ELECTRONICS AND INSTRUMENTATION Credits: 4 Hour	:s: 4						
Objectives	\Box To make the students to understand the concept of analog electronics.							
	\Box To introduce the advanced concepts of digital electronics.							
	\Box To educate the students on the concepts of optoelectronics.							
	□ To equip the students for designing electronic instruments.							
	□ To introduce the concepts of nanoelectronics and physics aspects to the studen	ıts.						
Unit -I	ANALOG ELECTRONICS -Operational amplifiers: Introduction -op-	-						
	parameters-feedback- differential amplifier -comparators - mathematical operatio							
	active filters - instrumentation amplifiers - isolation amplifiers - OTAs -Vol	Itage						
	regulators: Principles and operations.							
Unit-II	DIGITAL ELECTRONICS- Introduction - overview of logic functions and l							
	gates - combinational logic - flip-flops and related circuits - sequential log							
	registers, counters, shift-registers and memory - microprocessor architecture - A/D	and						
	D/A conversion.							
Unit III	OPTOELECTRONICS- LEDs – semiconductor lasers – photodiodes – solar cell	lls –						
	photodetectors - optical fibers - communication - optoelectronic modulation	and						
	switching devices – optocoupler – optical data storage devices.							
Unit IV	ELECTRONIC INSTRUMENTATION - Basics of instrumentation system	n –						
	transducers - types of transducers - strain gauges - RTDs - LVDT - piezoele	ctric						
	transducers – load cell – flow meters – signal conditioning – data acquisi							
	and conversion – data transmission.							
Unit V	NANOELECTRONICS - MOSFETs - `electron transport in nanostructures - reso	nant						
	tunneling diodes – single electron transfer devices – molecular switches and memory							
	storage – nano-electromechanical systems - quantum dot cellular automata.							
Reference and	Text Books: -							
Bhattachar	ya P. (2019). Semiconductor Optoelectronic Devices. Pearson Education.							
Chua L.O,	.DesoerC.A andKuh E.S. (1997). Linear and Nonlinear Circuits. McGraw-Hill.							
	L.D.(1991). Electronic Instrumentation and Measurement Techniques. Prentice Hal	ll of						
India								
•	(2015). <i>Electronic devices</i> . Pearson Education.							
	W. (2009). Fundamentals of Nanoelectronics. Pearson Education Inc.							
	andHill W. (2006). Art of electronics. Cambridge Univ.Press.							
	(2017). <i>Electronic Instrumentation</i> . McGraw Hill Education.							
	an MandMurali K. (1996). <i>Chaos in Nonlinear Oscillators</i> . World Scientific.							
	P. (2011). <i>Electronic principles</i> . Tata McGraw-Hill.							
Outcomes	After completing this course, the students should able to							
	 To design analog electronic circuits. To design digital electronic circuits. 							
	 To design digital electronic circuits. To design optoelectronic circuits. 							
	 To design optoelectronic circuits. To design electronic instruments. 							
	 To design electronic instruments. To gain knowledge on nanoelectronic devices. 							

	I Semester
Course code	ELECTROMAGNETIC THEORY AND OPTICS Credits: 4 Hours: 4
Objectives	□ Fundamentals of Maxwell's equations are their applications in different situations.
	□ Insight on fundamental laws of optics and how they can be derived from Maxwell's
	Equations.
	□ Introduction to novel calculus of tensors and illustrate their usage in different
	Material properties.
	\Box An overview on various optical activities and their applications in material
	characterization.
TI:4 T	Basics of non-linear optical effects and non-linear optical materials.
Unit -I	MAXWELL'S EQUATIONS -Review of Gauss's law in electrostatics and magnetism - Ampere's law- Faraday'slaw -displacement current - Maxwell's equations - differential
	and integral forms - scalar and vector potentials and applications Potential due to a
	uniformly charged sphere - magnetic inductiondue to a current carrying wire.
Unit-II	ELECTROMAGNETIC WAVE PROPAGATION - Plane electromagnetic waves in
01111-11	free surface - Poynting vector - characteristic impedance - wave equation in an isotropic
	medium - wave equation in insulators and conductors - reflection by a perfect conductor
	- normal and oblique incidence - Fresnel equations for parallel and perpendicular
	polarization.
Unit III	CRYSTAL OPTICS - Crystal symmetry-Light propagation in anisotropic media –
	Maxwell's equations: the constitutiverelation -Index ellipsoid – wave plates – Biaxial
	media: Optic axes – positive and negative crystals - Electrical conductivity tensor
	stress optic tensors - third rank tensors – Linear Electro-optic effect - Fourth rank
	tensors: third order susceptibility tensor.
Unit IV	OPTICAL ACTIVITY- Optical Polarization - Magneto-optical effects - Magneto-
	optical Kerr and Faraday effect - Kerr andPockel effect - applications - Harmonics and
	sum & frequency generation - stimulated Brillouin scattering (SBS) - stimulated Raman
	scattering (SRS) – applications of SBS and SRS for material characterization –
	examples.
Unit V	NONLINEAR OPTICS - Theory and applications of non-linear effects - frequency
	conversion - optical switching - phase conjugation - optical bistability - nonlinear optical
	materials - NLO crystals, properties and applications.
Reference and	Text Books: -
CorsonD.	andLorrain P. (2013). Introduction to Electromagnetic Fields and Waves, Literary
Lice	nsing, LLC.
	(2008). A student's Guide to Maxwell's Equations. Cambridge University Press.
	.J. (2015). Introduction to Electrodynamics. Pearson Education.
	Cand Balmain K.G (2015). Electromagnetic Waves and Radiating Systems. Pearson
	ation.
	2014). Introduction to Nonlinear Optics, Cambridge University Press.
•	1997) <i>Physical Properties of Crystals</i> . Oxford University Press.
	ndYehP. (2007). <i>Photonics</i> . Oxford University Press.
Outcomes	After completion of this paper the students will understand the effect of light propagation in materials and how materials change the nature of electromagnetic wave.
	Specifically they will be able to:
	 Derive Maxwell's equations and apply them to study the electrostatics and magneto
	statics.
	Understand boundary conditions between different materials and reflection and
	refraction of light based on Maxwell's equations.
	Appreciate the use of tensors in determining crystal symmetry and in explaining
	advanced properties of materials like elastic properties, piezoelectric effect, eletro-
	optic effect etc.
	Elucidate how optical activities occur in materials and how they can be used to
	further characterize materials.
	Apprehend the fundamentals of Non-linear optical effects, the nature of materials

Course Code

LIST OF EXPERIMENTS Any Fifteen experiments

- 1. Band gap determination.
- 2. Determination of elastic constants Hyperbolic fringes.
- 3. Determination of elastic constants Elliptical fringes.
- 4. Determination of dielectric constant.
- 5. Ultrasonic diffractometer Ultrasonic velocity in liquids.
- 6. Magnetostriction measurements.
- 7. Study of crystal lattices.
- 8. Strain gauge meter Determination of Young's modulus of a metallic wire.
- 9. Conductivity of ionic crystals.
- 10. Instrumentation Amplifier.
- 11. Regulated power supply.
- 12. 555 Timer Astablemulti-vibrator.
- 13. Operational amplifier characteristics and applications.
- 14. Active filter.
- 15. RC Phase Shift Oscillator (FET).
- 16. AD/DA convertor.
- 17. Viscosity of liquid Meyer's disc.

LABORATORY EQUIPMENTS REQUIREMENTS:

TOTAL: 90 PERIODS

- 1. X-Y translation microscope.
- 2. Thermostats.
- 3. Ultrasonic generator.
- 4. Multimeters.
- 5. IC's transistors and resistors.

	II Semester								
Course code	NUMERICAL METHODS FOR MATERIALS SCIENCE	Credits: 4	Hours: 4						
Objectives	To improve and enhance the analytical ability in problem solvin	g skills of stu	dents using						
	numerical methods.								
	To demonstrate the understanding of numerical methods using Mat Lab.								
	To solve the large system of linear equations and find the roots of non-linear equations								
	 equations. To familiarize interpretation and curve fitting using numerical methods. To understandand use the appropriate method of numerical differentiation and 								
	integration when the function is too complicated and difficult to solve.								
	To demonstrate the use of different methods to find the solution of ordinary								
	differential equation and get exposed to basic statistics.		·						
Unit -I	MATLAB/SCILAB PROGRAMMING - Overview of Ma	tlab – data	types and						
	variables - operators - flow control - functions - input-output	ıt– array man	ipulation –						
	writing and running programs – plotting – overview of simulink								
Unit-II	SYSTEM OF EQUATIONS - Linear equations: Introduct								
	Gaussian elimination – singular systems – Jacobiiteration -								
	Nonlinear equations: Introduction – bisection method – rule of								
	method – Newton-Raphson method – Comparison of methods Seidel and Newton's methods for systems of nonlinear equation	0	equation –						
Unit III	INTERPOLATION & CURVE FITTING AND ERROR A		Polynomial						
	interpolation theory - Newton's forward and backward in		•						
	Lagrange's method - Lagrange's inverse interpolation – piecew	·							
	interpolation with cubic spline – least-squares line - curve fit		•						
	trigonometric polynomials.								
Unit IV	NUMERICAL DIFFERENTIATION AND INTEGRA	ATION -	Numerical						
	differentiation: Finite difference approximations - Richa	urdson extra	polation –						
	derivatives								
	by interpolation. Numerical integration: introduction to q	uadrature –	composite						
	Trapezoidal and Simpson's rule - recursive rules and Romberg integration - Gaussian								
	integration.								
Unit V	DIFFERENTIAL EQUATIONS SOLVING AND STAT								
	problems: Euler method - Taylor series method - Runge-Kutta								
	stiffness – adaptive Runge-Kutta method – Predictor - correc		•						
	differential equations – phase-plane analysis: chaotic different								
	value problems:finite-difference method. Statistics: random distribution – expected value, average and mean – variance a								
	covariance and correlation. Generating random numbers – Mont								
Reference and		e carlo integr	ation.						
	andGuenther R.B. (2019). An Introduction to Numerical Methods	: A MATLAB	Approach.						
	H. and FinkK. D. (2015). Numerical Methods using MATLAB. Pe	earson Educat	ion India.						
	2012). Introductory Methods of Numerical Analysis. Prentice Hal								
Limited.			-						
	an M.K. (1997). Numerical Methods in Science and Engineeri	ng. National	Publishing						
Company, I			(D						
	C. and Phillips C. (2014). Numerical Methods with worked exam	iples: MATL	AB edition.						
Springer. Outcomes	At the end of each unit the students will be able to								
Jucomes	At the end of each unit the students will be able to Write efficient mat lab code, analyze and interpret numeric	cal results							
	Solve large system of linear equation and find the roots of		uations						
	 Solve large system of linear equation and find the roots of Construct approximate polynomial of given data and also 		•						
	methods for curve fitting.	"PP1, numero	+1						
	 Numerically differentiate and evaluate complicated integral 	als.							
	 Understand the basic concepts in numerical methods to est 		utions to						
	1								

	II Semester						
Course code	CHARACTERISATON OF MATERIALS Credits: 4 Hours: 4						
Objectives	To introduce the important characterization techniques to the students						
	□ To make the students understand some important thermal analysis techniques.						
	□ To make the students familiarize with image formation in an optical microscope and						
	learn other specialized microscopic techniques.						
	To make the students learn the principle of working of electron microscopes and						
	scanning probe microscopes.						
	To make the students understand some important semiconductor characterization						
	techniques.						
	To introduce the students the basics of some important spectroscopic techniques.						
Unit -I	THERMAL ANALYSIS -Introduction – thermogravimetric analysis (TGA) –						
	instrumentation – determination of weightloss and decomposition products – differential						
	thermal analysis (DTA)- cooling curves - differential scanning calorimetry (DSC) -						
	instrumentation – specific heat capacity measurements – determination of thermomechanical parameters						
Unit-II	thermomechanical parameters . MICROSCOPIC METHODS - Optical Microscopy: optical microscopy techniques –						
01111-11							
	Bright field – Dark field optical microscopy – phase contrast microscopy - differential interference contrast microscopy - fluorescence microscopy - confocal microscopy -						
TT •4 TTT	Metallurgical microscope.						
Unit III	ELECTRON MICROSCOPY AND SCANNING PROBE MICROSCOPY- SEM-						
	FESEM- EDAX,- HRTEM: working principle and Instrumentation – sample preparation						
	- scanning probe microscopy - STM - AFM - working principle, Instrumentation and						
	modes of operation.						
Unit IV	ELECTRICAL METHODS AND OPTICAL CHARACTERISATION- Two probe						
	and four probe methods- van der Pauw method – Hall probe and measurement –						
	scattering mechanism - C-V, I-V characteristics - Schottky barrier capacitance -						
	impurity concentration – electrochemical C-V profiling – limitations -						
	Photoluminescence – light – matter interaction – instrumentation – Applications.						
Unit V	SPECTROSCOPY- Principles and instrumentation for UV-Vis-IR, FTIR spectroscopy,						
	Raman spectroscopy, ESR, NMR, NQR, mass spectroscopy – Bain bridge-Jordan Mass						
	spectroscope – application.						
Reference and							
	N.andMcCashE.M. (2017). Fundamentals of Molecular Spectroscopy. McGraw-Hill						
Educa							
	979). Electron Microscopy and Microanalysis of Crystalline Materials. Applied Science						
	hers, London.						
•	Haines P.J. (2002). Analytical Chemistry. Viva Books Private Limited, New Delhi.						
	1991). Electron and Ion microscopy and Microanalysis principles and Applications.						
	1 Dekker Inc., New York.						
-	A. andKlipstainP.C. (1990). Growth and Characterization of semiconductors. Adam						
0	, Bristol.						
Outcomes	Students will be able to describe TGA, DTA, DSC and TMA, its applications and						
	interpretation of results.						
	Students have understood the concept of image formation in Optical microscope and						
	other specialized microscopes.						
	Students have learned the working principle and operation of SEM, TEM, STM and						
	AFM.						
	\Box Students have understood the necessary theory of Hall measurement, four –probe resistivity measurement C_{V} L_{V} Electrochemical Photoluminescence and						
	resistivity measurement, C-V, I-V, Electrochemical, Photoluminescence and						
	electroluminescence techniques.Students have learned basics and necessary theory of some important spectroscopic						
	techniques and its applications.						

	II Semester								
Course code	QUANTUM MECHANICS	Credits: 4	Hours: 4						
Objectives	 To expose the students to the basic formulation of quantum mechanics. To impart knowledge to the students about potential problems. To introduce knowledge on angular momentum to the students. To explore the ideas on approximation methods to the students. To inspire the students with knowledge of scattering theory. 								
Unit I	BASIC FORMULATION-Inadequacy of Classical Mechanics - Postulates of quantum mechanics-wave function, probabilistic interpretation, observables and operators - Eigenvalues and Eigenfunctions, Expectation values - Commutators - Bra &Ket vectors, completeness, orthonormality, Basic theorems-Uncertainty principle-Ehrenfest's theorem-Schrodinger wave equation-stationary state solutions.								
Unit II	POTENTIAL PROBLEMS- Free particle in three dimension dimension and three dimension-potential step, potential barrier well potential, periodic potential, linear harmonic oscillator, rig atom, atomic orbitals.	er, tunnel eff gid rotator, th	ect, square e hydrogen						
Unit III	ANGULAR MOMENTUM- Angular momentum operator Eigenvalues of angular momentum operator, matrix represent angular momenta, Clebsch-Gordon coefficients coefficients for - Pauli matrices.	tations, addit	ion of two						
Unit IV	only), non-degenerate case - An harmonic oscillator and Stark et	APPROXIMATION METHODS - Time - independent perturbation theory (First order only), non-degenerate case - An harmonic oscillator and Stark effect - Variation method - Application to the deutronand helium atom - Time dependent perturbation theory –							
Unit V	SCATTERING THEORY - Centre of mass and Laboratory systems - Scattering amplitude and cross sections-Scattering of a wave packet-optical theorem - Born approximation-validity-partial wave analysis-phase shifts.								
DevanathanV Mathews P.M SakuraiJ.J. ar Schiff L.I. (20	Text Books: - 2009). Quantum Mechanics, PHI Learning Pvt. Ltd., New Delhi. . (2011). Quantum Mechanics. Narosa Publishing House Pvt. Ltd I and VenkatesanK. (2017). A Text book of Quantum mechanics, M dNapolitano J. (2017). Modern Quantum Mechanics, Cambridge D19). Quantum Mechanics, McGraw Hill Education.	IcGraw Hill E University Pr							
Outcomes	 6). Quantum Mechanics: Concepts and Applications. Wiley India After end of the course, the students will be able to Make use of fundaments of quantum mechanics to various ph Utilize the potential problems to solve real practical problems Gain the understandings of angular momentum and its useful Learn about the approximation methods and its useful problems. Understand the basic knowledge about scattering theory a physics problems. 	nysics problen s. ness in spect ness to vario	oscopy. us physics						

	II Semester							
Course code	PHYSICS OF MATERIALS Credits: 4 Hours: 4							
Objectives	To impart knowledge on various properties of materials							
	□ To introduce the concepts of various mechanical test and plastic deformation the							
	students.							
	To introduce the students about various dielectric materials and their application.							
	To expose the students to different types of magnetic materials and their properties.							
	The various applications used in magnetic materials.							
	□ To study the properties of various optical materials, LED and LCD and their applications.							
	To make the students understand about various properties of smart materials, shape							
	memory alloys CCD and nanomaterials and their applications.							
Unit -I	MECHANICAL PROPERTIES - Plastic deformation by slip – the shear strength of							
	perfect and real crystals -dislocation movement- methods of strengthening against							
	plastic yield - Creep - mechanisms - fracture - ductile fracture - brittle fracture -							
	Griffith criterion - fracture toughness - fatigue fracture - mechanical tests - tensile,							
	hardness and creep tests.							
Unit-II	DIELECTRIC PROPERTIES - Dielectric constant and polarizability - different kinds							
	of polarization - Internal electric field in a dielectric -Clausius- Mossotti equation -							
	dielectric in a ac field - dielectric loss - ferroelectric - types and models of ferro electric							
	transition - electrets and their applications – piezoelectric and pyroelectric materials.							
Unit III	MAGNETIC PROPERTIES - Classification of magnetic materials- origin of							
	magnetism – Langevinand Weiss theories - exchange interaction - magnetic anisotropy -							
	magnetic domains - molecular theory - hysterisis - hard and soft magnetic materials -							
	ferrite structure and uses - magnetic bubbles - magnetoresistance - GMR materials -							
T I*4 TX7	dilute magnetic semiconductor (DMS) materials.							
Unit IV	OPTICAL PROPERTIES - Optical absorption in insulators, semiconductors and metals – band to band absorption – luminescence - photoconductivity. Injection							
	metals – band to band absorption – luminescence - photoconductivity. Injection luminescence and LEDs - LED materials - super luminescent LED materials - liquid							
	crystals - properties and structure - liquid crystal displays-comparison between LED and							
	LC displays.							
Unit V	ADVANCED MATERIALS - Metallic glasses - preparation, properties and							
	applications - SMART materials - piezoelectric, magnetostrictive, electrostrictive							
	materials - shape memory alloys - rheological fluids - CCD device materials and							
	applications - solar cell materials (single crystalline, amorphous and thin films) -							
	introduction to nanoscale materials and their properties.							
Reference and								
	(2019). Principles of Electronic Materials and Devices. McGraw-Hill Education.							
	andWaymanC.M. (1998). Shape Memory Materials, Cambridge University Press.							
U U	V. (2015). Materials Science and Engineering: A First Course. PHI Learning.							
Outcomes	yana C.andInoue A. (2017). <i>Bulk Metallic Glasses</i> , CRC Press. After completing the course, the students should be able to:							
Jucomes	\Box The students have gained knowledge in mechanical tests and plastic deformation							
	mechanism.							
	☐ To gain knowledge on optical materials properties and their applications.							
	Understand the basic knowledge about advanced materials and preparation							
	methods for nanomaterials and their properties.							
	Understand the basic knowledge about advanced materials and preparation							

Course Code

LIST OF EXPERIMENTS

Any ten experiments:

- 1. Electrical conductivity of metals and alloys with temperature-four probe method.
- 2. Hall effect Determination of Hall co-efficient, charge carrier density and mobility.
- 3. Magnetic susceptibility-Quincke's method.
- 4. Crystal Growth-Solution technique.
- 5. Crystal Growth-Gel technique.
- 6. Determination of melt flow index of polymers.
- 7. Creep characteristics of a metallic wire.
- 8. Particle size determination-laser Determination of wave length of He-Ne laser-Diffraction method.

45

LAB – II BIO-MATERIALS SCIENCE

- 9. Ultrasonic interferometer ultrasonic velocity in liquids.
- 10. Ferroelectricity Hysteresis loop coercivity, retentivity and saturation magnetisation.
- 11. Fraunhoferdiffraction using laser.

Strength of Materials Laboratory

- 1. Tensile test on mild steel rod.
- 2. Compression test on wood.
- 3. Torsion test on mild steel rod.
- 4. Impact test.
- 5. Compression test on helical spring.
- 6. Deflection test on Carriage spring.
- 7. Double shear test.
- 8. Hardness shear test.
- 9. Deflection test on metal beams.
- 10. Tension test on helical spring.

Laboratory equipments requirements:

- 1. Four probe.
- 2. Electromagnet.
- 3. Laser source.
- 4. Melt flow index device.
- 5. Ultrasonic interferometer.
- 6. Universal testing machine.

TOTAL: 90 PERIODS

00

45

L T P C 0 0 6 3

	III Semester								
Course code	FUNDAMENTALS OF NANOSCIENCE &Credits: 4Hours: 4								
	TECHNOLOGY								
Objectives	□ To make the students understand the structure and properties of								
	nanomaterials.								
	□ To educate students about the various synthesis methods of nanostructure								
	materials.To introduce the students about quantum dots.								
	 To introduce the students about quantum dots. To give awareness about characterization of materials like crystallite size 								
	analysis, scanning etc.,								
	 To inspire the nanotechnology applications. 								
Unit -I	NANOSCALE SYSTEMS - Length, energy, and time scales - Quantum confinement in								
0	3D, 2D, 1D and zero dimensional structures - Quantum confinement of electrons in								
	semiconductor nanostructures- Size effect and properties of nanostructures- Top down								
	and Bottom up approach.								
nit-II	SYNTHESIS OF NANOSTRUCTURE MATERIALS - Gas phase condensation –								
	Vacuum deposition - Physical vapor deposition (PVD) - chemical vapor deposition								
	(CVD) – laser ablation- Sol-Gel- Ball milling –Electro deposition- electroless deposition								
	- spray pyrolysis - plasma based synthesis process (PSP) - hydrothermal synthesis -								
	carbon nanotubes and graphene synthesis.								
Unit III	QUANTUM DOTS - Excitons and excitonic Bohr radius - nanoparticles and quantum								
	dots - Preparation through colloidal methods - Epitaxial methods- MOCVD and MBE								
	growth of quantum dots - Absorption and emission spectra - photo luminescence								
Unit IV	spectrum - optical spectroscopy – linear andnonlinear optical spectroscopy. CHARACTERIZATION - Crystallite size analysis using Scherrer formula - Particle								
Omt I v	size measurement using DLS and HRTEM - Atomic Force Microscopy (AFM) and								
	Scanning tunneling microscopy (STM) - applications to nanostructures –								
	Nanomechanical characterization – Nanoindentation – femotosecond laser.								
Unit V	NANOTECHNOLOGY APPLICATIONS - Applications of nanoparticles, quantum								
	dots, nanotubes and nanowires for nanodevice fabrication- Single electron transistors,								
	coulomb blockade effects in ultra-small metallic tunnel junctions - nanoparticles based								
	solar cells and quantum dots based white LEDs - CNT based transistors - principle of								
Defenence and	dip pen lithography.								
Reference and	andScherrer G.W. (1994). Sol-Gel Science. Academic Press, Boston.								
	of Nanoscience, Engineering and Technology (The Electrical Engineering handbook								
	,(2002). Kluwer Publishers.								
	alwa. (2000). Hand book of Nanostructured Materials and Technology. Vol. 1-5. Academic								
Press,									
	alwa. (2002). Nanostructured materials and nanotechnology. Academic Press, USA.								
	N.(2000).Nanoscale Characterization of Surfaces & Interfaces. Weinheim Cambridge:								
Wiley-									
	9). <i>Nanotechnology</i> . AIP press, Springer-Verlag, New York.								
Outcomes	 Plan and develop the application of semiconductor nanomaterials. Familiar with various synthesizing methods. 								
	 Familiar with various synthesizing methods. Workout various quantum dot synthesis. 								
	 Advance the applications of nanostructures and nanomechanical characterization. 								
	The students can understand the importance of nanoscience and technology with								
	the fundamental concepts behind size reduction.								

	III Semester						
Course code	POLYMER AND COMPOSITE MATERIALS Credits: 4 Hours: 4						
Objectives	□ To introduce polymers, their synthesis and polymerization techniques.						
	To impart knowledge on the various properties of polymers.						
	To gain knowledge of various polymer processing techniques, and applications.						
	To introduce the fundamentals of composites and their mechanical behavior.						
	To impart knowledge on the fabrication of different types of composites.						
Unit -I	INTRODUCTION TO POLYMERS-Classification of polymers – copolymers –						
	tacticity - geometric isomerism - molecular weight distribution and averages -						
	Measurement of molecular weight – synthesis of polymers – step growth polymerisation						
	 chain growth polymerisation – polymerisation techniques. 						
Unit-II	PROPERTIES OF POLYMERS- Polymer conformation and chain dimensions –						
	Freely jointed chains- amorphous state – glass transition temperature – the crystalline						
	state – ordering of polymer chains – crystalline melting temperature – techniques to						
	determine crystallinity – Mechanical properties – Introduction to viscoelasticity –						
	dynamic mechanical analysis – mechanical models of viscoelastic behaviour –						
Unit III	Boltzmann superposition principlePOLYMERPROCESSING,RHEOLOGYANDAPPLICATIONS-Basic						
	processing operations – extrusion, molding, calendaring, coating – Introduction to						
	polymer rheology – non-Newtonian flow – analysis of simple flows – rheometry –						
	capillary rheometer, Couette rheometer and plate rheometer - applications-conducting						
	polymers-biopolymers-liquid crystal polymers - high temperature polymers.						
Unit IV	INTRODUCTION TO COMPOSITES - Classification of composite materials – the						
	concept of load transfer - matrix materials - polymers, metals and ceramics - fibers -						
	glass, carbon and metallic fibers - fiber packing arrangements - bonding mechanisms –						
	mechanical behavior of composites.						
Unit V	FABRICATION OF COMPOSITES- Polymer matrix composites – liquid resin						
	impregnation routes, pressurized consolidation of resin pre-pregs, consolidation of resin						
	moulding compounds, injection moulding of thermoplastics, hot press moulding of						
	thermoplastics – metal composites – squeeze infiltration, stir casting, powder blending –						
	ceramic composites - powder based routes, layered ceramic composites, carbon/carbon						
	composites.						
Reference and							
	J. (2014). <i>Plastics Engineering</i> . Elsevier India. J.R. ViswanathanN.V.&Sreedhar J. (2019). <i>Polymer Science</i> . New Age International.						
	ne T.W. (2008). An Introduction to Composite Materials. Cambridge University Press.						
•	(2014). Polymer Science and Technology. Pearson Prentice Hall.						
	(2008). Fiber-Reinforced Composites: Materials, Manufacturing and Design. CRC Press,						
Boca F							
Outcomes	The students will be able to understand						
	□ The basics properties ofpolymers, their synthesis and various polymerization						
	techniques.						
	□ The conformation, glass transition temperature, crystallinity and mechanical						
	behavior of polymers.						
	Different polymer processing methods, and various applications of polymers.						
	Classification of composites, matrix and reinforcement, and mechanical behavior of						
	composites.						
	□ Fabrication techniques of composites and apply them in practice.						

	III Semester
Course code	SOLID STATE PHYSICS Credits: 4 Hours: 4
Objectives	To understand the basic crystal structures, bonding of solids and the lattice energy
	calculations.
	To explain electrical and thermal conduction in metals and Fermi distribution
	function.
	To discuss how our understanding of lattice dynamics is formulated in terms of
	travelling waves, together with the role of the interatomic forces.
	To study the properties of different Semiconducting materials and
	superconducting materials and their applications.
Unit -I	CRYSTAL STRUCTURE AND BONDING - Crystalline solids - crystal systems -
	Bravais lattices -coordination number - packing factors - cubic, hexagonal, diamond
	structure, Sodium Chloride Structure – lattice planes and Miller Indices- interplanar
	spacing – directions. Types of bonding - lattice energy - Madelung constants – Born
	Haber cycle – cohesive energy.
Unit-II	FREE ELECTRON THEORY - Drude theory – Wiedemann-Franz Law and Lorentz
	number –Quantum state and degeneracy-density of states, concentration - free electron
	statistics (Fermi-Dirac), Fermi energy and electronic Specific heat, Electrical resistivity
	and conductivity of metals – Boltzmann transport theory –-electrical and thermal
	conductivity of electrons.
Unit III	LATTICE DYNAMICS - Mono atomic and diatomic lattices - anharmonicityand
	thermal expansion- phonon -Momentum of phonons, Inelastic scattering of photons by
	long wavelength phonons, Local phonon model - Einstein and Debye model, density of
	states, Thermal conductivity of solids- due to electron-due to phonons - thermal
	resistance of solids - phonon-phonon interaction-normal andUmklapp processes -
	scattering experiments.
Unit IV	PERIODIC POTENTIALS AND ENERGY BANDS - Bloch's theorem - Kronig-
	Penney model-Construction of Brillouin Zones- Effective mass of electron-nearly free
	electron model – Tight binding approximation-Construction of Fermi Surfaces-density
	of states curve-electron, holes and open orbits-Fermi surface studies - Cyclotron
	resonance – anomalous skin effect –de Hass van Alphen effect.
Unit V	PHYSICS OF SEMICONDUCTORS AND SUPERCONDUCTIVITY -
	Semiconductors - direct and indirect gaps - carrier statistics (intrinsic and extrinsic) -
	law of mass action- electrical conductivity and its temperature variation - III - V and II -
	VI compound semiconductors. Superconductivity - critical parameters - anomalous
	characteristics - isotope effect, Meissner effect - type I and II superconductors - BCS
	theory (elementary) - Josephson junctions and tunneling - SQUID - High temperature
	superconductors - applications.
Reference and	Text Books: -
Ali Omar M	. (2002). Elementary Solid State Physics. Pearson Education.
	WandMerminN.D. (2003). Solid State Physics, Cengage Learning.
	(2008). Solid State Physics. Laxmi Publications.
	tterson and Bernad C. Bailey. (2018). Solid State Physics: Introduction to the Theory.
Sprir	6
-	S. and Palmer S.B. (2000). Solid State Physics. Gordon Breach Science Publishers.
	(2019). Solid State Physics: Structure and Properties of Materials. Narosa Publishing
	se Pvt. Ltd.
Outcomes	At the end of the course the students should be able to:
	□ Make use of fundamental concepts of various crystal systems, types of bonding and
	calculate the cohesive energy.
	Understand the basics concepts of free electron theory and Boltzmann transport
	theory.
	To gain knowledge on atomic lattice vibrations, phonon-phonon interactions and
	Einstein and Debye models.
	The students would have gained knowledge on periodic potentials and Fermi surface
	studies.
	Would have known the applications and various properties of semiconductors and
	superconductive materials.

Course Code MATERIALS SCIENCE LAB - III AND MINI PROJECT

LTPC 00 6 3

A. MATERIALS SCIENCE LABORATORY - III

LIST OF EXPERIMENTS

Any Ten experiments

- 1. Density measurements organic materials and polymers.
- 2. NDT Ultrasonic flaw detector.
- 3. TGA Measurement and interpretation of results.
- 4. Faraday effect.
- 5. X-ray powder method indexing, cell determination and identification of unknown elements.
- 6. Charge density, atomic scattering factor calculations.
- 7. Kerr effect.
- 8. Laser coherence, divergence measurement.
- 9. Optical Fibre Measurement of numerical aperture and bending loss.
- 10. Optical absorption spectrophotometer.
- 11. Identification of phases using metallurgical microscope.
- 12. Preparation of buffer solutions and pH measurements.
- 13. Laser Raman sample preparation, recording and analysis.
- 14. FTIR studies sample preparation, recording and analysis.
- 15. Etch pattern of single crystals.
- 16. MATLAB/SCILAB/MATERIALS STUDIO simple programs and plots.
- 17. Synthesis of Nanomaterials.

B. MINI PROJECT

TOTAL: 45+45 = 90 PERIODS

				I	V Seme	ester						
Course code	MOLECULAR SPCTROSCOPY Credits: 3 Hours: 3										ırs: 3	
Objectives		Specti	oscopy ir	n physics	s to the	student	s.	Ū		tomic and		
Unit -I	SYMMETRY ASPECTS OF MOLECULAR ORBITALS -Valence bond theory – Molecular orbital theory- Heitler London theory for Hydrogen molecule - Hybridization											
					er Lond	lon theo	ory for	Hydrogei	n mo	lecule - H	ybridi	zation
	 SP - SP²&SP³ Hybrids. ROTATIONAL SPECTRA - Rotational energy of a diatomic molecule – Rigid and 									1 1		
Unit-II	non-rig spectro molecu	non-rigid rotators – isotopic substitution – Stark effect – its importance in microwave spectroscopy – quadrupole hyperfine interaction - Rotational spectra of polyatomic molecules – pure rotational Raman spectra – diatomic linear molecule – symmetric top molecules- Molecular structure – using IR & Raman spectroscopy.									owave tomic	
Unit III	VIBRA molecu spectra princip disasso	ATION ules – In a – Vibi ple – ociation	AL PRO nformation rational c intensity – mutual	DPERT n on mo ourse st distribu exclusio	IES- N lecular ructure ition - on prind	Vibration constitu e – Rota – portr ciple.	nal spe ution fr utional ait pa	ectra of om IR st course sj rabolae	diato udies pectra – d	omic and – Vibrati a – Franci isassociati	onal F k – C ion –	Raman ondon pre-
Unit IV	disassociation – mutual exclusion principle. NON LINEAR SPECTROSCOPIC PHENOMINA Non-linear Raman Phenomena- Hyper Raman effect- Classical treatment –Experimental techniques- Stimulated Raman Scattering –Inverse Raman Effect-Coherent Anti-Stoke's Raman Scattering-Photo acoustic Raman Scattering-Multi photon spectroscopy-two photon absorption- Multiphoton absorption. X-ray spectra; rotational and vibrational spectra of diatomic molecules.											
Unit V	RESONANCE SPECTROSCOPY - Interaction between spin and magnetic field – Nuclear resonance – Bloch equations - Chemical shift – Dipole –Dipole interaction and spin lattice interaction – Mossbauer –ESR-NQR (principle only) spectroscopy and its application – Mossbauer spectroscopy - applications – Electronic structure – molecular structure – crystal symmetry and molecular structures.											
Reference and		•	•									
AruldhassC	G. (2001)). Molec	ular stru	cture an	d spect	roscopy	. Prenti	ice Hall o	of Ind	lia, New D	Delhi.	
Colin N Ba	nwell. (2	2019). <i>I</i>	Fundamen	ntals of N	<i>Iolecu</i>	lar Spec	etrosco	by, McGr	raw H	Hill.		
DograS.K.	(2015).A	Atomic a	and Molec	cular Sp	ectrosc	opy. Pe	arson P	ublicatio	ons.			
Mchale, Jea				-								
Mool Chan	`	· /		1	1.2				e Inte	rnational		
	shers, Ne			-		1	r J ·	0				
Sindhu P.S				ecular S	nectros	scopy N	New Ac	ve Interna	ations	1.		
Willard et a							-					
Outcomes	🗆 Apj	preciate		rinciples			-		differ	ent regio	ons o	f the
	🗆 App	ply the	concepts	of group	theory	y to mol	ecular	vibrations	s.			
	🗆 Rel	late the	theory of	spectros	scopy to	o the stu	ıdy of 1	nolecula	r stru	cture.		

	I Semester		
Course code	BIOMATERIALS	Credits: 3 Hours: 3	
Objectives	□ To introduce the response of biomaterials to host envir	onment, and host response	
	to biomaterials.		
	□ To introduce various materials used in bone and joint replacement.		
	□ To gain knowledge about materials used in cardiovascular implants.		
	To know about dental materials and dental implants.		
	To impart knowledge on soft tissue and drug delivery i		
Unit -I	BIOLOGICAL PERFORMANCE OF MATERIALS -Biocompatibility- introduction		
	to the biological environment – material response: swelling		
	dissolution, deformation and failure, friction and wear – host response: the inflammatory		
	process - coagulation and hemolysis- approaches to thrombo- resistant materials		
Unit-II	development. ORTHOPAEDIC MATERIALS - Bone composition and properties - temporary		
01111-11	-		
	fixation devices - joint replacement – biomaterials used in l	U	
	metals and alloys – stainless steel, cobalt based alloys,		
	ceramics: carbon, alumina, zirconia, bioactive calcium phosphates, bioglassand glass		
Unit III	 ceramics – polymers: PMMA, UHMWPE/HDPE, PTFE – bone cement – composites. CARDIO VASCULAR MATERIALS- Blood clotting – blood rheology – blood 		
	vessels – the heart – aorta and valves – geometry of bloc	-	
	vascular implants: vascular graft, cardiac valve prostheses, o	cardiac pacemakers – blood	
	substitutes – extracorporeal blood circulation devices.		
Unit IV	DENTAL MATERIALS- Teeth composition and mechani		
	materials – bases, liners and varnishes for cavities – fillings		
	materials for oral and maxillofacial surgery – dental ceme	ents and dental amalgams –	
X X 4 / X X	dental adhesives.		
Unit V	SOFT TISSUE MATERIALS - Biomaterials in oph		
	solutions, contact lenses, intraocular lens materials – tis connective tissue grafts - suture materials – tissue adhesive		
	and materials – selection, performance and adhesion of polymeric encapsulants for implantable sensors.		
Reference and			
	992). Biological Performance of Materials: Fundamentals of	of Biocompatibility. Marcel	
	ter Inc, New York.	5 1 5	
Chen Q.andT	Chen Q.andThouasG. (2015). Biomaterials. A Basic Introduction. CRC Press.		
	ParkJ.&LakesR.S. (2010).Biomaterials: An Introduction. Springer.		
	Hoffman A.S, SchoenF.J.&LemonsJ.E. (2004). Biomaterials	Science: An Introductionto	
	rials in Medicine. Academic Press.		
-	tt. (2019). Biomaterials. Springer.		
	(editor). (1992). Materials Science and Technology: A Compr		
	Medical and Dental Materials. VCH Publishers Inc, New York.		
Outcomes	After completion of this course, the students should able to		
	Understand the response of biomaterials to host environm biomaterials.	ient, and nost response to	
	 Know and prepare various materials used in bone and joir 	nt renlacement	
	☐ Gain knowledge on materials used in synthetic blood vess		
	other cardiovascular implants.	ions, pacemakers and m	
	 To prepare impression materials and dental cements, and 	know about dental	
	implants.		
	☐ To gain knowledge on soft tissue replacement and drug do	elivery materials.	
L		· · · · · · · · · · · · · · · · · · ·	

ELECTIVE PAPERS

		I Semester			
Course code		MOLECULAR ELEC	CTRONICS	Credits: 3	Hours: 3
Objective					
Unit -I	INTRODUCTION TO NANOTECHNOLOGY -Background to nanotechnology: periodic table – atomic structure – molecules and phases – energy – molecular and atomic size – surface and dimensional space – Nanaomaterials-top down and bottom up approaches.				
Unit-II	CARBON NANOSTRUCTURES - Fullerenes – CNTs-types of nanotubes – formation of nanotubes – assemblies – purification of carbon nanotubes – electronic properties – synthesis of carbon nanotubes – carbon nanotube interconnects – carbon nanotube FETs – CNTs for memory applications.				
Unit III	NANOELECTRONIC DEVICES-FUNDAMENTALS - Electrodes & contacts – functions – molecular electronic devices – first test systems – simulation and circuit design – fabrication; Future applications: MEMS – robots – random access memory – mass storage devices.				
Unit IV	MOLECULAR COMPUTERS - Molecular wires and switches. Biomolecular computer, molecular arrays as memory stores, DNA for molecular devices - DNA's ability to conduct electrical currents. Charge transfer rates in solution - molecules between nanofabricated electrodes.				
Unit V	FLEXIBLE ELECTRONIC DEVICES - Electroactive organic molecules, Plastic Electronics, Electrical conduction in ploymers, Donor molecules, Acceptor molecules, Optoelectronic devices: OLEDs, OTFTs.				
Geoffrey J, A James M Tou Progra Juan Carlos Experi Nanos Michael C. I	, Yakh eering A Ashwell. ur. Molea amming: Cuevas iment (N cience). Petty. M		b Inc; 1 edition. John Wiley & Sons I hts, Chemistry, Devic -981-238-269. r Electronics: An Int Vorld Scientific Serie. ny; 1 st Edition.	nc. ces, Architecti roduction to 2 s in Nanotech	ıre and Theory and nology and
Michael Wil <i>Nanot</i> Pradeep T. (2 Rainer Wase	lson, Ka echnolog 2007). <i>N</i> er (Ed.) ials and On suc 0 Un	maliKannangara, Geoff Smith, Mie y: Basic Science and Emerging Tech ANO: The Essentials – Understandin (2003). Nanoelectronics and Info Novel Devices, Wiley-VCH. cessful completion of the course, a s lerstand the molecular nanotechnoloc lize the importance of carbon nanot	hnologies, Chapman ng Nanoscience and l formation Technolog student will be able to ogy and its application	& Hall CRC Nanotechnolo y: Advanced	gy. Electronic c devices.

	I Semester		
Course code	NON-DESTRUCTIVE TESTING Credits: 3 Hours: 3		
Objectives	□ To introduce the students to liquid penetrant and magnetic particle inspection.		
	To make the students understand the principle, working and uses of radiographic		
	testing.		
	 To impart knowledge about the ultrasonic testing. To make the gludents understand the principle, working and application of addy. 		
	□ To make the students understand the principle, working and application of eddy current technique.		
	 To expose the thermal and optical methods used in NDT. 		
Unit -I	INTRODUCTION AND SURFACE NDT METHODS -Definition of terms,		
	discontinuities and defects/flaws – fracture mechanics concept of design and the role of		
	NDT – life extension and life prediction – penetrant testing and magnetic particle		
	testing, basic principle of penetrant testing – limitations and advantages – basic principle		
	involved in magnetic particle testing – development and detection of large flux –		
	longitudinal and circular magnetization – demagnetization.		
Unit-II	RADIOGRAPHIC TESTING - Properties of X-rays and gamma rays - attenuation and		
	differential attenuation – interaction of radiation with matter – Principle of radiographic		
	testing and recording medium – films and fluorescent screens – nonimaging detectors –		
	film radiography - calculation of exposure for X-ray and gamma rays - quality factors -		
	Image quality indications and their use in radiography – neutron radiography.		
Unit III	ULTRASONIC TESTING - Ultrasonic waves - velocity, period, frequency and		
	wavelength - reflection and transmission - near and far field effects and attenuation -		
	generation – piezoelectric andmagnetostriction methods – normal and angle probes –		
	methods of Ultrasonic testing – Principle of pulse echo method – Equipment – examples		
	- rail road inspection, wall thickness measurement – range and choice of frequency.		
Unit IV	EDDY CURRENT TESTING - Introduction – Principles of eddy current inspection –		
	conductivity of a material – magnetic properties – coil impedance – lift off factor and		
	edge effects – skin effect – inspection frequency – coil arrangements – inspection probes – types of circuit – Reference pieces – phase analysis – display methods – typical		
	applications of eddy current techniques.		
Unit V	THERMAL AND OPTICAL METHODS- Imaging – principle and applications –		
	testing of composites – acoustic emission testing – application of AET – on-line		
	monitoring or continuous surveillance and applications in materials science – Optical		
	methods of NDT – photo elasticity – evaluation procedure – Holographic NDT		
	procedure – speckle phenomenon – speckle interferometry – speckle shear		
	interferometry – Fourier optics – Fourier filtering techniques for non-destructive testing.		
Reference and			
-	1984). Laser Speckle & Related Phenomena, Springer-Verlag, New York.		
	ohn V. (2012). Non-Destructive Testing. Springer-Verlag New York Inc.		
McGonnagleW.J. (1961). <i>Non-Destructive Testing Methods</i> , Mc Graw Hill Co., NY. <i>Metals Hand Book</i> , Vol.2, 8 th Edition, ASTM, Metals Park, Ohio.			
Outcomes	The students will learn about liquid penetrant and magnetic particle inspection.		
Outcomes	The students will understand the principle, working and uses of radiographic		
	testing.		
	The students will gain knowledge on ultrasonic testing.		
	The students will be able to apply their knowledge on eddy current technique.		
	The students would be able to analyse the thermal and optical methods used in		
	NDT.		

	I Semester		
Course code	NONLINEAR OPTICS AND MATERIALS Credits: 3 Hours: 3		
Objectives	 To introduces the concepts of electromagnetic theory and refractive index of materials. To expose the students the concept of optical susceptibility. To make the students to understanding the concept of second order non linearity. To introduce the processes of third order nonlinear optical effects. To make the students to understand the properties of non-linear optical materials. 		
Unit -I	ELECTROMAGNETIC THEORY -Maxwell equations – wave equations in various media and its propagation – origin of complex refractive index – classical theory of optical absorption (electron oscillator model) and dispersion (Lorenz oscillator model) – classical theory of anharmonic oscillators.		
Unit-II	OPTICAL SUSCEPTIBILITIES - Wave equation description of nonlinear optical susceptibilities – quantum mechanical treatment of nonlinear optical susceptibilities – frequency and intensity dependence of polarization – and dielectric susceptibility – first and higher order susceptibilities.		
Unit III	SECOND-ORDER NONLINEARITIES - Second harmonic generation – sum and difference frequency generation – parametric processes – simple theory and calculations of nonlinear polarization – various phase matching techniques in second harmonic generation (SHG).		
Unit IV	THIRD-ORDER NONLINEARITIES - Third harmonic generation – four-wave mixing – Kerr nonlinearity – intensity dependent effect – self-phase modulation – cross- phase modulation. Stimulated Raman scattering – stimulated Brillioun scattering. Parametric gain – parametric amplification and oscillation Applications of frequency mixing and up-conversion – difference frequency generation – optical phase conjugation: theory and applications – Photorefractive effect and applications – solitons: theory and applications – optical bistability.		
Unit V	NONLINEAR OPTICAL MATERIALS - Nonlinear optics of organic materials and polymers – liquid crystals – photorefractive materials – organic doped glasses – rare earth doped glasses and crystals – semiconductors – optical fibers and photonic crystal fibers – ferroelectric materials and other novel optical materials.		
LaudB.B. (2 MurtiY.V.G Robert W.Be Shen Y.R. (2	n N. (2005). <i>Nonlinear Optics</i> . World Scientific, Singapore. 011). <i>Lasers and Non-linear Optics</i> . New Age International Pvt. Ltd. .S. andVijayanC. (2014). <i>Essentials of Nonlinear Optics</i> . Wiley. oyd. (2009). <i>Nonlinear Optics</i> . Academic Press, London. 2003). <i>Principles of Nonlinear optics</i> . Wiley-Interscience, New York. (1990). <i>Growth and characterization of nonlinear optical materials</i> . Pergamon		
Outcomes	 After the completion of the course the students able to Understand the concept of electromagnetic theory. Appreciate the importance of optical susceptibility. Reveal the origin of second harmonic generation and other second nonlinear optical processes. Understand the important third order optical nonlinearities. Gain knowledge on the properties of non-linear optical materials. 		

	I Semester		
Course code	LASERS AND APPLICATIONS	Credits: 3	Hours: 3
Objectives	 To introduce knowledge on basics of lasers and its application To make the students understand about theoretical studies on laser systems. To impact the basic knowledge on laser system compound. To introduce the knowledge about various laser systems. The students will be able to know about laser system used for materials processing. To impact knowledge on the laser applications. 		
Unit -I	PRINCIPLES OF LASERS-Spontaneous emission, Stimulated emission, Einstein		
	coefficients, ratio of rates of stimulated and spontaneous emission – Threshold condition for laser action – Rate equations – Population inversion in three level and four level systems.		
Unit-II	OPTICAL RESONATORS- Resonant cavities, Gaussian		
	resonator modes, spot size - Types of resonators, geometries, quality factor of an optical		
	resonator – Q-switching andModelocking concepts and techniques.		
Unit III	LASER SYSTEMS - Gas lasers: He-Ne laser, Carbon dioxide gas laser, Nitrogen gas laser, Argon ion gas laser – Solid state lasers: Ruby laser, Nd-YAG laser, fiber laser, Ti-Sapphire - Semiconductor Laser – homojunctionand heterojunction laser - Liquid Lasers: Dye lasers.		
Unit IV	MATERIALS PROCESSING- Laser power density - heat affected zone - Welding -		
	Fusion depth and welding geometry - Welding speeds - Advantages and uses of laser		
	welding - Drilling hole geometry - Advantages and uses of laser drilling - resistor trimming - Capacitor height adjustment and fabrication, Scribing - Controlled fracturing.		
Unit V	APPLICATIONS Metrology - interferrometric techniques - Laser ranging and tracking - Laser Doppler velocimetry - Ring laser and rotation sensing - Pollution monitoring - Holography and speckle in displacement and deformation measurements - ions - Medical applications.		
Reference and	Text Books: -		
CharchanS.S. (1975). Lasers in Industry. Van Nostrand Reinhold Co.			
Laud B.B. (2011). Lasers and Non-Linear Optics. New Age International (P) Ltd.			
Shea D.C.O, Callen W.RandRhodes W.T. (1977). An Introduction to Lasers and their Applications.			cations.
Pearson.			
	Steen William M. (2010). Laser Material Processing. Springer. VerdeyenJ.T.(1990). Laser Electronics. Prentice Hall.		
Outcomes	After the completion of course, the students should be able to		
	 Understood the principle involved in Einstein coefficient a Gained knowledge on laser compound and Q switching mo Understand the basic knowledge about various laser system The students have gained knowledge on various laser proc advantages. The students would have known the laser applications on i 	ode focusing on ns working m essing methoo	concepts. lethods. ds and
	fields.		

	I Semester		
Course code	PYTHON PROGRAMMING	Credits: 3	Hours: 3
Objectives	To introduce the concepts of algorithms and developing them	n.	
-	□ To make the students to understand different types ofdata, expressions and		
	statements in Python environment.		
	□ To elucidate the aspects of control flow and functions in Python environment.		
	□ To introduce the concepts of lists, tuples and dictionaries in Python environment.		
	□ To make the students to use files, modules and packages.		
Unit -I	ALGORITHMIC PROBLEM SOLVING -Algorithms, building blocks of algorithms		
	(statements, state, control flow, functions), notation (pseudo code, flow chart,		
	programming language), algorithmic problem solving, simple strategies for developing		
	algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a		
	card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.		
Unit-II	DATA, EXPRESSIONS, STATEMENTS - Python interpreter and interactive mode;		
	values and types: int, float, boolean, string, and list; variables,		
	tuple assignment, precedence of operators, comments; modules		
	definition and use, flow of execution, parameters and argumen		
	exchange the values of two variables, circulate the values		
	between two points.		
Unit III	CONTROL FLOW, FUNCTIONS – Conditionals: Boolea	n valuesand	operators.
	conditional (if), alternative(if-else), chainedconditional (if-el		·
	while, for, break, continue, pass; Fruitful functions: return valu		
	global scope, function composition, recursion; Strings: string sl	-	
	functions and methods, string module; Lists as arrays. Illustrative programs: square root,		
	gcd, exponentiation, sum an array of numbers, linear search, binary search.		
Unit IV	LISTS, TUPLES, DICTIONARIES - Lists: list operations, lis	st slices, list n	nethods, list
	loop, mutability, aliasing, cloning lists, list parameters; Tuples	: tuple assign	ment, tuple
	as return value; Dictionaries: operations and methods; advance	ced list proce	ssing - list
	comprehension; Illustrative programs: selection sort, ins	ertion sort,	mergesort,
	histogram.		
Unit V	FILES, MODULES, PACKAGES -Files and exception: text files, reading and writing		
	files, format operator; command line arguments, errors and	*	, handling
	exceptions, modules, packages; Illustrative programs: word cour	nt, copy file.	
Reference and			
	(2015). Python Crash Course. No Starch Press.		
	pert. (2012). Fundamentals of Python: First Programms. Cengage	Learning.	
	013). Learning Python. O'Reilly Media.		
-	oR. (2019). Core Python Programming. Dreamtech Press.		
	7). Python Machine Learning by Example. Packt Publishing Ltd.		
Outcomes	After completing this course, the students should able to		
	Develop algorithms.		
	Understand different types of data, expressions and stateme	ents in Python	
	environment.		
	☐ Make use of control flow and functions in Python environ	nment.	
	Use lists, tuples and dictionaries in Python environment.	• ,	
	Use files, modules and packages Python programming en	vironment.	

Objectives AND DEVICES Objectives To introduce the basic aspects of electronic energy band structures. To make the students to understand transport properties of charges in materials. To ead the students to understand fabrication of semiconductor devices. To make the students to understand fabrication of optoelectronic devices. To make the students to understand fabrication of optoelectronic devices. To make the students to understand fabrication of optoelectronic devices. Unit -I INTRODUCTION -Introduction: Properties of semiconductors - Recombination mechanism - Electron, Hole recombination through traps - Junction properties of semiconductors - Optical constants - Light absorption spectrum - Light absorption edge - Electron interaper traps or phenomena: Theory of junction devices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption adge - Fundamentals ofabsorption and reflection - Electron transport phenomena: Theory of electron transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport cofficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes - inpurities in semiconductors - carrier concentration as a function of temperature - High doping effects - Non-equilibrium phenomena - carrier transport or devices - hourdary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND HYRISTORS - Unpolar devices - Characteristic - MOSFET Structures - Nonvolatile memory devices. Bipolar transistor - Static characteristic - Schotty dide - Three terminal thyristor. Unit IV <	II Semester									
Objectives To introduce the basic aspects of electronic energy band structures. To make the students to understand properties of materials. To aid the students to understand transport properties of charges in materials. To expose the students to understand fabrication of potoelectronic devices. To make the students to understand fabrication of potoelectronic devices. To make the students to understand fabrication of potoelectronic devices. To make the students to understand fabrication of potoelectronic devices. To make the students to understand fabrication of potoelectronic devices. Unit -I INTRODUCTION - Introductions - Recombination mechanism - Electron, Hole recombination in exponsimation withdonorsand acceptors at lowtemperatures - Quantum theory of junction devices - Generation ofrecombination processes injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption edge - Fundamentals ofabsorption and reflection - Electron transport phenomena: Theory of electron transport in crystalline semiconductor Devices: Equilibrium properties - electrons and holes - inpurities in semiconductor Devices: Equilibrium properties - electrons and holes - inpurities in semiconductor Devices: Equilibrium properties - electrons and holes - inpurities in semiconductor Devices: Equilibrium processes - betaddom mechanism - Basic equators for Semiconductor devices: Matal-semiconductor contact - Elergy - Band Relation - Schottky Effect - Characteristic - MOSFET - Nasic device characteristic - MOSFET - Nasic device characteristic - MOSFET - Nasic device characteristic - MOSFET -	Course code		SEMICONDUCTOR MATERIALS	Credits: 3	Hours: 3					
Image: To aid the students to understand rapport properties of materials. Image: To aid the students to understand transport properties of charges in materials. Image: To aid the students to understand transport properties of semiconductor devices. Image: To aid the students to understand transport properties of semiconductors - Recelectron Theory - Transport properties. Bonds andBandsinSemiconductor - Electronicband structure - Junction Properties. Bonds andBandsinSemiconductors - Recelectron Theory - Transport properties. Bonds andBandsinSemiconductors - Properties of p-n, n+-n, p+-j pinctions - Surface recombination through traps - Junction properties of semiconductors - Optical conserves at lowtemperatures - Quantum theory of junction devices - Generation ofrecombination processes injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption spectrum - Light absorption and reflect of free charge carriers on the absorption edge - Fundamentals of absorption and reflect of free charge carriers on the bio field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductors - Bourgamants transport equation for Bloch states - relaxation time approximation to the low field transport properties in high fields - recombination and generation processes - breakdown mechanism - Basic equations for Semiconductor devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices - haracteristic - Semiconductor - Static characteristic - Solid state sensors - opticel Structures - Monsfell weiges - Photonic Devices: Light Emitting diodes - LED for fib										
□ To aid the students to understand transport properties of charges in materials. □ To make the students to understand fabrication of optoelectronic devices. □ Transport properties. Books andBandSinSemiconductors - Freeelectron Theory - Transport properties. Books andBandSinSemiconductors - Electronicband structure - Junction Properties of semiconductors - Recombination mechanism - Electron, Hole recombination - Recombination withdonorsand acceptors at lowtemperatures - Quantum theory of junction devices - Generation ofrecombination processes injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption spectrum - Light absorption and reflection - Electron transport phenomena 'Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductors - carrier concentration as a function of temperature - High doping effects - Non-equilibrium phenomena - carrier transport - Transport properties - Non-equilibrium phenomena - carrier transport - Transport properties - Non-equilibrium phenomena - carrier transport or devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metals. Unit IV FABRICATION OF LED'S AND SEXSORS -Photonic Devices: Light Emiting diodes - LED for optics - Sentorshor - Solar cells - Shototky dide - Three terminal thyristor. <th>Objectives</th> <th></th> <th>o introduce the basic aspects of electronic energy band st</th> <th>ructures.</th> <th></th>	Objectives		o introduce the basic aspects of electronic energy band st	ructures.						
□ To expose the students to understand fabrication of semiconductor devices. Unit -1 INTRODUCTION - Introduction: Properties of semiconductors: -Freeelectron Theory - Transport properties. Bonds andBandsinSemiconductor: -Flectronicband structure - Junction Properties of semiconductors: Recombination mechanism - Electron. Hole recombination through traps - Junction properties of p-n, n+-n, p+-p junctions - Surface recombination - Recombination withdonorsand acceptors at lowtemperatures - Quantum theory of junction devices - Generation ofrecombination processes injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Doptical constants - Light absorption spectrum - Light absorption edge - Effect of free charge carriers on the absorption edge - Fundamentals ofabsorption and reflection - Electron transport phenomena: Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic equations for Semiconductor Devices: Equilibrium properties - electrons and holes - impurities in high fields - recombination and generation processes - breakdown mechanism - Basic equations for Semiconductor devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characteristics - Schottky dode - Theve terminal thyristor. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor - Photodiode - Avalanche Photodiode - Ph		□ To aid the students to understand transport properties of charges in materials.								
□ To make the students to understain fabrication of optoelectronic devices. Unit -I INTRODUCTION - Introduction: Properties of semiconductors - Freeelectron Theory - Transport properties. Bonds andBandsinSemiconductor: -Electronicband structure - Junction Properties of semiconductors- Recombination mechanism - Electron, Hole recombination in - Recombination withdonorsand acceptors at lowtemperatures - Quantum theory of junction devices - Generation of recombination processes injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption spectrum - Light absorption edge - Effect of free charge carriers on the absorption edge - Fundamentals ofabsorption and reflection- Electron transport phenomena: Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductors - carrier concentration processes - breakdown mechanism - Basic equations for Semiconductor devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: theat-acteristic - MOSFET Structures - Nonvolatile memory devices. Bipolar transistor - Static characteristics - Spower transistor - switching transistor - Static characteristics - Shottky diode - Three terminal thyristor. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: characteristics - Shottky diode - Three terminal thyristor. Unit IV FABRICATION OF LED'S AND SENSORS -Photonic Dev										
Unit -I INTRODUCTION -Introduction: Properties of semiconductors - Freeelectron Theory - Transport properties. Bonds andBandsinSemiconductor: -Electronicband structure - Junction Properties of semiconductors: Recombination mechanism - Electron, Hole recombination through traps - Junction properties of p-n, n+-n, p+-p junctions - Surface recombination - Recombination withdonorsand acceptors at lowtemperatures - Quantum theory of junction devices - Generation ofrecombination processes injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption spectrum - Light absorption edge - Effect of free charge carriers on the absorption edge - Fundamentals ofabsorption and reflection - Electron transport phenomena: Theory of electron transport in crystalline semiconductors - carrier concentration transport equation for Bloch states - relaxation time a proximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes - impurities in significadis - recombination and generation processes - breakdown mechanism - Basic equations for Semiconductor devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characteristics - MoSFET Structures - Nonvolatile memory devices. Bipolar transistor - Static characteristics - power transistor - switching transistor - Hyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Phototinc Devices: Light Emititing diodes - LED for fiber										
Transport properties. Bonds andBandsinSemiconductor: -Electronicband structure - Junction Properties of semiconductors- Recombination mechanism - Electron, Hole recombination through traps - Junction properties of p-n, n+n, n+p- junctions - Surface recombination - Recombination withdonorsand acceptors at lowtemperatures - Quantum theory of junction devices - Generation offrecombination processes injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption spectrum - Light absorption edge - Effect of free charge carriers on the absorption edge - Fundamentals offabsorption and reflection- Electron transport phenomena: Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductor Devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices - equations for the interior of devices - novel attransistor - Static characteristic - MOSFET - basic device characteristics - Schottky diode - Three terminal thyristor. Unit IV FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodoide - Avalanche Photodic - Photocanic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Traser D.A. (1986). The Physics of Semiconduct	IInit -I									
Junction Properties of semiconductors- Recombination mechanism - Electron, Hole recombination through traps - Junction properties of p-n, n+-n, p+-p junctions - Surface recombination - Recombination withdonorsand acceptors at lowtemperatures - Quantum theory of junction devices - Generation ofrecombination processes injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption edge - Effect of free charge carriers on the absorption edge - Fundamentals ofabsorption and reflection- Electron transport phenomena: Theory of electron transport in crystalline semiconductors - Botzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes – impurities in semiconductor - concentration as a function of temperature - High doping effects - Non-equilibrium phenomena - carrier transport - Transport properties in high fields – recombination and generation processes - breakdown mechanism - Basic equations s of Semiconductor devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characteristic - MOSFET Structures - Nonvolatile memory devices. Elpidal transistor - Static characteristics - sport rusistor - whotoking transistor - Thyristors - basic device characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performa c - reliability - Photodetectors - Phot		· · · · · ·								
recombination through traps - Junction properties of p-n, n+-n, p+-p junctions - Surface recombination - Recombination withdonorsand acceptors at lowtemperatures - Quantum theory of junction devices - Generation ofrecombination processes injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption edge - Effect of free charge carriers on the absorption edge - Fundamentals of absorption and reflection - Electron transport phenomena: Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation - Schotty - Effect - Characteristic - MOSFET - Nasis Center - Characteristic - MOSFET - Nasis Center - Characteristic - MOSFET - Nasis Centere - Static chara										
recombination Nithdonorsand acceptors at lowtemperatures - Quantum theory of junction devices - Generation offecombination processes injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption spectrum - Light absorption edge - Effect of free charge carriers on the absorption edge - Fundamentals ofabsorption and reflection. Electron transport phenomena: Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductors - carrier concentration as a function of temperature - High doping effects - Non-equilibrium phenomena - carrier transport - Transport properties in high fields - recombination and generation processes - breakdown mechanism - Basic equations for Semiconductor devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text B			-							
Quantum theory of junction devices - Generation ofrecombination processes injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption edge - Fundamentals of absorption and reflection-Electron transport phenomena: Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductor - carrier concentration as a function of temperature - High doping effects - Non-equilibrium phenomena - carrier transport - Transport properties in high fields - recombination and generation processes - breakdown mechanism - Basic equations for Semiconductor devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characteristics - MOSFET Structures - Nonvolatile memory devices. Bipolat transistor - Static characteristics - power transistor - switching transistor - Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components.										
Injunctiondevices. Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption edge - Fundamentals of absorption and reflection - Electron transport phenomena: Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductor Devices: Equilibrium properties of the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JEFT and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristics - power transistor - switching transistor - Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Photoransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchNH, andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Ox			-	-						
Unit-II OPTICAL PROPERTIES - Optical properties of semiconductors - Optical constants - Light absorption spectrum – Light absorption edge - Effect of free charge carriers on the absorption edge - Fundamentals of absorption and reflection - Electron transport phenomena: Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductor Devices: Equilibrium processes - breakdown mechanism - Basic equations for Semiconductor devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristics - Schottky diod - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Pringer D.A. (1980). <i>Hephysics of Semiconductor d</i>		-	• •	comonation	processes					
Light absorption spectrum – Light absorption edge - Effect of free charge carriers on the absorption edge - Fundamentals of absorption and reflection- Electron transport phenomena: Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductor concentration as a function of temperature - High doping effects - Non-equilibrium phenomena - carrier transport - Transport properties in high fields - recombination and generation processes - breakdown mechanism - Basic equations for Semiconductor devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Semiconductor devices. Viley India, New Delhi. Schroder D.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M.Holonyak J.R.NandStillman G.E. (1989)	Unit-II	- U		ors - Optical	constants -					
absorption edge - Fundamentals of absorption and reflection- Electron transport phenomena: Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductor Devices: Equilibrium processes - breakdown mechanism - Basic equations for Semiconduct devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohnic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristic - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photoidode - Avalanche Photodiode - Phototrasistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Farser D.A. (1980). Handbook on Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor State	0 0									
phenomena: Theory of electron transport in crystalline semiconductors - Boltzmann's transport equation for Bloch states - relaxation time - relaxation time approximation to the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductors - carrier concentration as a function of temperature - High doping effects - Non-equilibrium phenomena - carrier transport - Transport properties in high fields - recombination and generation processes - breakdown mechanism - Basic equations for Semiconductor devices - equations for the interior of devices - houndary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - MOSFET Structures - Nonvolatile memory devices. Bipolar transistor - Static characteristics - power transistor - switching transistor - Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF ILED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Ke										
the low field transport coefficients - scattering mechanism. Unit III TRANSPORT PROPERTIES - Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes - impurities in semiconductors - carrier concentration as a function of temperature - High doping effects - Non-equilibrium phenomena - carrier transport - Transport properties in high fields - recombination and generation processes - breakdown mechanism - Basic equations for Semiconductor devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JEET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristic - general characteristic - MOSFET - basic device characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe										
Unit III TRANSPORT PROPERTIES – Basic Process in Semiconductor Devices: Equilibrium properties - electrons and holes – impurities in semiconductors - carrier concentration as a function of temperature - High doping effects - Non-equilibrium phenomena - carrier transport - Transport properties in high fields – recombination and generation processes - breakdown mechanism – Basic equations for Semiconductor devices - equations for the interior of devices – boundary conditions – Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristic - MOSFET - basic device characteristic - general characteristic - MOSFET - basic device characteristic - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: Faster Ostic of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductor devices. Clarendon Press, Oxford. Setter S.N. (1980). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M.Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Pretter H International Inc., London. Gain knowledge on energy band structures.		transpo	rt equation for Bloch states - relaxation time - relaxatior	n time approx	simation to					
properties - electrons and holes – impurities in semiconductors - carrier concentration as a function of temperature - High doping effects - Non-equilibrium phenomena - carrier transport - Transport properties in high fields – recombination and generation processes - breakdown mechanism – Basic equations for Semiconductor devices - equations for the interior of devices – boundary conditions – Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristics - NOSFET Structures - Nonvolatile memory devices. Bipolar transistor - Static characteristics - power transistor - switching transistor – Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1980). Handbook on Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1980). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M.Holonnyak J.R.NandStillman G.E. (1989).Physi										
as a function of temperature - High doping effects - Non-equilibrium phenomena - carrier transport - Transport properties in high fields - recombination and generation processes - breakdown mechanism - Basic equations for Semiconductor devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - MOSFET - basic device characteristic - MOSFET - transistor - Static characteristics - power transistor - switching transistor - Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1980). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M.Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London.	Unit III				•					
carrier transport - Transport properties in high fields – recombination and generation processes - breakdown mechanism – Basic equations for Semiconductor devices - equations for the interior of devices – boundary conditions – Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristic - general characteristic - MOSFET - basic device characteristic - structures - Nonvolatile memory devices. Bipolar transistor - Static characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototencic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M.Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties. Gain knowledge on fabrication		· ·								
processes breakdown mechanism Basic equations for Semiconductor devices - equations for the interior of devices - boundary conditions - Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristics - MOSFET Structures - Nonvolatile memory devices. Bipolar transistor - Static characteristics - power transistor - switching transistor - Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties. Gain knowledge on fabrication of semiconducto										
equations for the interior of devices – boundary conditions – Systems. Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristics - MOSFET Structures - Nonvolatile memory devices. Bipolar transistor - Static characteristics - power transistor - switching transistor – Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., North-Holland, Amsterdam. Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materia										
Unit IV FABRICATION OF TRANSISTORS AND THYRISTORS - Unipolar devices: Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristic - MOSFET Structures - Nonvolatile memory devices. Bipolar transistor - Static characteristics - power transistor - switching transistor - Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the optical properties. Gain knowledge on fabrication of semiconductor devices.					devices -					
Metal-Semiconductor contacts - Energy - Band Relation - Schottky Effect - Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristics - MOSFET Structures - Nonvolatile memory devices. Bipolar transistor - Static characteristics - power transistor - switching transistor - Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the transport materials. Understand the transport materials. Understand the transport materials. Gain knowledge on fabrication of semiconductor devices.	Unit IV				ar devices.					
Characterization of Barrier Height - Device Structure - Ohmic Contact - JFET and MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristic - MOSFET Structures - Nonvolatile memory devices. Bipolar transistor - Static characteristics - power transistor - switching transistor - Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS - Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices.				·						
MESFET - basic device characteristic - general characteristic - MOSFET - basic device characteristic - MOSFET Structures - Nonvolatile memory devices. Bipolar transistor - Static characteristics - power transistor - switching transistor - Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., North-Holland, Amsterdam. Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices.										
Static characteristics - power transistor - switching transistor - Thyristors - basic characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the optical properties of materials. Gain knowledge on fabrication of semiconductor devices. Gain knowledge on fabrication of semiconductor devices.										
characteristics - Schottky diode - Three terminal thyristor. Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., North-Holland, Amsterdam. Sze S.M. andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M, Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties.										
Unit V FABRICATION OF LED'S AND SENSORS -Photonic Devices: Light Emitting diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., North-Holland, Amsterdam. Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prent: Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Image:				or – Thyristo	ors - basic					
diodes - LED for fiber optics - LED performance - reliability - Photodetectors - Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., North-Holland, Amsterdam. Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the optical properties of materials. Gain knowledge on fabrication of semiconductor devices.		charac	eristics - Schottky diode - Three terminal thyristor.							
Photoconductor - Photodiode - Avalanche Photodiode - Phototransistor - Solar cells - Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., North-Holland, Amsterdam. Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the optical properties of materials. Gain knowledge on fabrication of semiconductor devices.	Unit V									
Thin film solar cells - solid state sensors, optical Sensors - optoelectronic components. Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., North-Holland, Amsterdam. Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Gain knowledge on fabrication of semiconductor devices.										
Reference and Text Books: - Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., North-Holland, Amsterdam. Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Gain knowledge on fabrication of semiconductor devices.										
Butcher P.N, MarchN.H. andTosi M.P. (2014). Crystalline Semiconducting Materials and Devices. Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., North-Holland, Amsterdam. Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices.	Reference and		<u>^</u>		ponents.					
Springer. Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., North-Holland, Amsterdam. Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices.				Materials and	Devices.					
Fraser D.A. (1986). The Physics of Semiconductor devices. Clarendon Press, Oxford. Keller S.P. (1980). Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., North-Holland, Amsterdam. Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices.										
Amsterdam. Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices.	Fraser D.A	A. (1986)	. The Physics of Semiconductor devices. Clarendon Press,	Oxford.						
 Sze S.M.andNg K.K. (2008). Physics of Semiconductor devices. Wiley India, New Delhi. Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices. 	Keller S.P.	. (1980).	Handbook on Semiconductors, Vol. 1-4. T.S. Moss, Ed., 1	North-Hollan	d,					
Schroder D.K. (1990). Semiconductor Material and Device Characterization. JohnWiley& Sons Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices.	Ams	terdam.								
Inc., New York. Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989). <i>Physical Properties of Semiconductors</i> . Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices.	Sze S.M.a	ndNg K.	K. (2008). Physics of Semiconductor devices. Wiley India.	, New Delhi.						
Wolfe C.M,Holonyak J.R.NandStillman G.E. (1989).Physical Properties of Semiconductors. Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to □ Gain knowledge on energy band structures. □ Understand the optical properties of materials. □ Understand the transport materials in properties. □ Gain knowledge on fabrication of semiconductor devices.				. JohnWiley&	ż Sons					
Prentice Hall International Inc., London. Outcomes After the completion of the course the students able to □ Gain knowledge on energy band structures. □ Understand the optical properties of materials. □ Understand the transport materials in properties. □ Gain knowledge on fabrication of semiconductor devices.				~						
Outcomes After the completion of the course the students able to Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices.		-		Semiconducto	ors.					
 Gain knowledge on energy band structures. Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices. 		1								
 Understand the optical properties of materials. Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices. 	Outcomes		•							
 Understand the transport materials in properties. Gain knowledge on fabrication of semiconductor devices. 			e e.							
☐ Gain knowledge on fabrication of semiconductor devices.										
Understand different fabrication steps involved in optoelectronic devices.				tronic device	s					

		II Semester								
Course code		ADVANCES IN CRYSTA	L GROWTH	Credits: 3	Hours: 3					
Objectives		o introduce the concepts of nucleation	2 1	eation.						
		o explain about the theories related to								
		o expose the various methods of melt								
	 To impact knowledge on the growth of crystals by solution growth. To make the students understand various methods of growing crystals from vapor 									
	To make the students understand various methods of growing crystals from vapor phase.									
TI:4 T			T 1 1							
Unit -I	NUCLEATION -Nucleation concept – Homogeneous, heterogeneous nucleation –									
	classical theory – Energy of formation of nucleus – kinetic theory of nucleation – statistical theory of nucleation – nucleation rate – induction period.									
Unit-II		RIES OF CRYSTAL GROWTH			•					
		Temkins model of crystal growth - limitations of Temkins model - BCF surface								
		n theory – solution of BCF surface di	<u>^</u>	-						
Unit III		GROWTH – Temperature measure		•						
	purific	tion - conservative and non-cons	ervative process	– Bridgman	method –					
	Czochralski method – Verneuil method – Zone melting – Fluid flow analysis in melt									
	growth – theory and experiment.									
Unit IV	SOLU	TION GROWTH - Measurement of	supersaturation - L	low temperati	are solution					
	growth – High temperature solution growth – Accelerated crucible rotation technique									
	(ACR)) – Electrocrystallization – Crystal g	rowth in gel – Grov	vth of biologi	cal crystals					
	– Hydr	thermal technique – Sol-gel growth	-	-						
Unit V	VAPO	JR GROWTH -Physical vapour tra	nsport -chemical v	apor transpor	t. Epitaxial					
	growth	techniques – Liquid phase epitaxy	- vapour phase epi	itaxy: chlorid	le, hydride,					
		ganic - molecular beam epitaxy - che	mical beam epitaxy	•						
Reference and	Text Bo	oks: -								
		oduction to crystal growth. Tailor an								
		estal Growth Processes. John Wiley a								
		yane Band BarracloughK.G. (1986).	Advance Crystal G	rowth. Prenti	ce Hall,					
Londo										
		C. (1973). Modelling Crystal Growth	0	1.						
·		Crystal Growth. Pergamon press, Lor								
÷		69). Nucleation. Marcel-Dekker Pub		1	1					
Outcomes		he students will understand the conce			cleation.					
		he students would have learnt the the								
		tudents would have known the variou		-						
		tudents would have gained knowledg			our nhasa					
	□ Students would have gained knowledge on growth of crystals from vapour phase.									

	II Semester									
Course code	MATERIALS PROCESSING	Credits: 3	Hours: 3							
Objectives	 To understand the basics of manufacturing processes. To impart the knowledge about surface treatment processes. Teaching the students about various processes of welding. To teach the students about mechanical working of metals. To understand the knowledge about powder metallurgical processes. 									
Unit -I	BASIC MANUFACTURING PROCESSES -Fundamental analysis of Manufacturing									
	processes, casting, casting processes, forging, methods of forging, extrusion, rolling,									
	spinning, turning, planingand shaping, milling, grinding.									
Unit-II	SURFACE TREATMENT PROCESSES - Necessity for surface modification, surface cladding, surface alloying, hard facing, shock hardening, conventional methods, carburising, nitriding, cyaniding, advantages of laser surface treatment over conventional methods, typical laser variables used in surface alloying, laser cladding, experimental set up.									
Unit III	WELDING PROCESSES - Various processes of welding,		• •							
	welding, oxyacetelene welding, resistance welding, spot welding, thermit welding, hermetic welding, projection welding, seam welding, butt welding, thermal effects of welding, effects on grain size and microstructure, internal stresses effect, corrosion effect, high energy beam welding, laser beam and electron beam welding, key hole effect.									
Unit IV	MECHANICAL WORKING OF METALS - Hot working, cold working, normalising, full annealing, tempering, theory of tempering, effect of tempering temperature on mechanical properties of carbon steels, different tempering process, deformation of metals, elastic deformation, plastic deformation, slip, twinning –									
Unit V	assessment of processed materials. POWDER METALLURGICAL PROCESS -Production of p	owders, pow	der mixing.							
	compacting, types of presses, sintering, soaking, finishing advantages of powder metallurgy, applications, production of tools, self lubricating bearings, magnets, cermets, ultrasonic cera	process, limit cemented carb	ations and oide cutting							
Reference and										
▲	(1995). Materials Science and Processes. Satya Prakashan, New I									
	M.K. (1998). Materials Science and Processes. Dhanpat Rai Publ									
U U	Sharma C.Pand Sharma A.(2010). <i>Heat Treatment: Principles and</i> ndia Learning Private Limited.	l Techniques.	Prentice							
	lov A, Kokona, (1987). A Laser and Electron beam material proc	essing hand h	ook MIR							
Publis		essing nana o								
Outcomes	The students will gain the knowledge about the basics of	various manuf	acturing							
	 processes. The students will learn the various surface treatment proce The students will understand the different welding technic The students will have better knowledge with mechanical The students will get clear understanding of powder metal 	ques. working of m								

	II Semester								
Course code	NANOELECTRONICS AND PHOTONICS Credits: 3 Hours: 3								
Objectives	To expose the students to the introductory concepts of nanoelectronics								
	andnanophotonics.								
	To explain the electron transport in semiconductors & nanostructures.								
	To make the students recognize the concept of electro migration.								
	To make the students acquire the knowledge in the theory of low-dimensional								
	structures and nanodevices science of molecular electronic devices.								
	To accomplish nanophotonics and basic properties of electromagnetic effects in								
	periodic media.								
Unit -I	MATERIALS FOR NANOELECTRONICS - Introduction – semiconductors – crystal								
	lattices: bonding in crystals – electron energy bands –semiconductor heterostructures –								
	organic semiconductors – carbon nanomaterials: graphene, nanotubes, and fullerenes.								
Unit-II	ELECTRON TRANSPORT IN SEMICONDUCTORS & NANOSTRUCTURES -								
	Introduction – time and length scales of the electron in solids – statistics of the electrons								
	in solids and nanostructures – density of states of electrons in nanostructures – electron								
	transport in nanostructures.								
Unit III	ELECTROMIGRATION – Introduction – electro-migration (EM) – wire morphology								
	- electron wind - EM induced stress in nanodevice - current-induced heating in								
	nanowire device - diffusion of material - importance of surfaces - failure of wires -								
	wire heating – EM consequences for nanoelectronics.								
Unit IV	LOW-DIMENSIONAL STRUCTURES AND NANODEVICES - Introduction -								
	Quantum confinement: Quantum wells, wires and dots – Uses of quantum structures–								
	band gap of nanomaterials. Tunneling – Single electron phenomena: Coulomb blockade								
	- uncertainty - resonant-tunneling diodes - field-effect transistors - single-electron								
	transfer devices. Molecular electronic devices.								
Unit V	NANOPHOTONICS -Light-matter interaction: Review of Maxwell's equations -								
	dispersion in materials - optical properties of insulators, semiconductors and metals -								
	electromagnetic properties of molecules, microscopic and nano particles - photonic								
	crystals: introduction - basic properties of electromagnetic effects in periodic media -								
	photonic crystal waveguides – photonic devices.								
Reference and									
	007). Current at the Nanoscale. Imperial College Press, London.								
	V. (2009). Fundamentals of Nanoelectronics. Pearson, New Delhi.								
	ochelap V. A. and Stroscio M.A. (2008). <i>Introduction to Nanoelectronics</i> . Cambridge								
	sity Press. nnathur Sand AdamsJ. (2008). Nanotechnology: Understanding small systems. CRC								
U I	Boca Raton.								
	a. (2005). <i>Quantum Transport: Atom to transistor</i> . Cambridge University Press,								
Cambr	· · · · ·								
Outcomes	Utilize the ideas with materials for nanoelectronics carbon nanomaterials:								
Jucomes	graphene, nanotubes, and fullerenes.								
	Gain knowledge on the density of states of electrons in nanostructures and								
	electron transport in nanostructures.								
	 Apply ideas of electromigration consequences for nanoelectronics. 								
	 Design the Molecular electronic devices. 								
	The students will gain knowledge on the basics of nanoelectronics, nanoelectronic								
	devices and nanophotonics.								

	II Semester								
Course code	CORROSION SCIENCE AND ENGINEERING Credits: 3 Hours: 3								
Objectives	 To introduce the students to corrosion process and corrosion control. To make the students understand the methods used for testing corrosion. To introduce the different methods used for coating. To impart knowledge on various types of corrosion with respect to corrosion. To expose the students to various application of coating. 								
Unit -I	CORROSION PROCESSES -Basic principles of electrochemistry and aqueous corrosion processes - Electrochemical Thermodynamics and Electrode Potential - Electrochemical Kinetics of Corrosion Cathodic and anodic behavior - Faraday's Law - Nernst equation; standard potentials Pourbaix diagram - Tafel equations, corrosion rate - Evans diagram - pitting, crevice and exfoliation corrosion; influence of deposits and anaerobic conditions; corrosion control; high temperature oxidation and hot corrosion; corrosion/mechanical property interactions.								
Unit-II	CORROSION TESTING - Materials and specimens – surface preparation – measuring and weighing – linear polarization – AC impedance – <i>in vivo</i> corrosion – paint tests – seawater tests.								
Unit III	COATING MANUFACTURE – Electrodeposition; flame and plasma spraying; thermal, HV of detonation gun, physical vapour deposition; chemical vapour deposition; HIP surface treatments.								
Unit IV	CORROSION IN SELECTED ENVIRONMENTS - Atmospheric Corrosion, Corrosion in Automobiles, Corrosion in Soils, Corrosion of Steel inConcrete, Corrosion in Water, Microbiologically Induced Corrosion, Corrosion in the Body, Corrosion in the Petroleum Industry, Corrosion in the Aircraft Industry, Corrosion in the Microelectronics Industry.								
Unit V	COATING APPLICATIONS -Abrasive, erosive and sliding wear. The interaction between wear and corrosion. Coating systems for corrosion and wear protection; new coating concepts including multi-layer structures, functionally gradient materials, intermetallic barrier coatings and thermal barrier coatings.								
Compr Denny A.Jor FontanaM.G Hutchings Ia Butter	 Text Books: - M, Conway B.E, Yeager Eand White. (2013). <i>Electrochemical Materials Science in rehensive Treatise of Electrochemistry</i>, Volume 4. Plenum press. nes. (2013). <i>Principles and Prevention of Corrosion</i>. Pearson. . (2017). <i>Corrosion Engineering</i>, McGraw Hill Education. nd Philip Shipwar. (2019). <i>Tribology: Friction and Wear of Engineering Materials</i>. worth-Heinemann. D.(1986). <i>Corrosion Testing and Evaluation</i>. Corrosion Metals Hand book, Vol. 13. 								
Outcomes	 The students would have learnt various corrosion process and corrosion control. The students would have understood the methods used for testing corrosion. They analyze and apply the different methods for coating. The students would have gained knowledge on corrosion type with respect to environment. The students would have learnt about the various concepts and applications of coating. 								

	II Semester							
Course code	SOLID STATE IONICS	Credits: 3 Hours: 3						
Objectives	□ To introduce the basic aspects of solid state physics.	· · · ·						
	□ To impart knowledge on solid state ionics, hydrogen stora	age and nano-ionic						
	materials.							
	To introduce the students to micro batteries, fuel cells, su	per capacitors and their						
	applications.	haimes for your oathodo						
	To familiarize the students to various characterization tec materials.	enniques for new cathode						
	To expose the students to the various application of ionic	materials						
Unit -I	BASIC ASPECTS OF SOLID STATE PHYSICS -Ty							
Cint I	Fundamentals of Crystallography-Simple Crystal structures-BCC, FCC, HCP - X -ray							
	diffraction-band structures of metals, semiconductors and in	-						
	conductivities.	sulators follocate clocutonic						
Unit-II	SOLID STATE IONICS - Concept of solid state ionics-	Importance of super-jonic						
	materials and structures -Classification of Superionic soli							
	cationic conductors, mixed ionic and electronic conductors-s	•						
	for high ionic conductivity - Experimental probes pertai	^						
	Theoretical models of fast ion transport- Applications of t							
	materials.							
Unit III	MICRO BATTERIES AND APPLICATION - Concept	t of a thin film solid state						
	battery- electrolyte thin films - flash evaporation techniq	ue - electromotive force -						
	reversible cells-free energy changes-capacity of a cell-power and energy density of a							
	cell-polymer electrolytes-application of polymer electrolytes in micro batteries, Fuel							
	cells-solid state battery-super capacitors.							
Unit IV		MATERIALS - Phase						
	identification- Thermal analysis-DTA-DSC-TG- Energy dis							
	spectroscopy (EDX)-X-ray - X-ray photoelectron spectro							
	characterization – XRD studies -Extended X-ray absorpt	tion fine structure - FTIR-						
TT*4 T7	Transport measurements. APPLICATIONS OF IONIC MATERIALS -Pri	interne lithium hetteries						
Unit V	APPLICATIONS OF IONIC MATERIALS -Pri thermodynamics and mass transport in solid state batterie	imary lithium batteries-						
	electrode kinetics-Secondary lithium batteries-Li-ion electrod							
	fabricationcharacterization of Li-ion cells- Comparison of							
	CMOS-RAM applications. Applications of Lithium batteries							
Reference and	Text Books: -							
	1981). Superionic Solids-Principles and applications. North He							
	ack, (1991). Modern Battery Technology, Elis Horwood Publis	hers.						
•	R. (2000). Battery Reference Book, Newnes.							
•	OzinA.&Andre C Arsenault, (2008).Nanochemistry: A Chemical Approach to							
	<i>omaterials</i> , Royal Society of Chemistry.							
	019). Principles of the Solid State. New Age International Priv							
Outcomes	\Box The students would have learnt the basic aspects of sol							
	Gained knowledge on solid state ionics, hydrogen stora	•						
	 Learnt about microbatteries, fuel cells, super capacitors Learnt about the various characterization techniques ay 							
	Learnt about the various characterization techniques av materials.	vanabie ibi catiloue						
	The students are familiar with various applications of i	onic materials						

						III	Sem	nester	•						
Course code					BI	IOEI	LEC	TRO	NICS	5		Credi	ts: 3		Hours: 3
Objectives		To pro fields.	ovide b	basic	cs of	bioel	lectro	onic o	device	es and	their app	lications	in va	ari	ous
Unit -I	META	AL OY	XIDE	SE	EMI	CON	IDU	СТО	R (1	MOS)	STRU	CTURE	-pr	n	Junction,
	<i>pn</i> Junc	ction Eq	quilibri	ium,	, Eff	iect o	of the	ne Bia	is Vol	tage, (Current -	- Voltag	e Ch	ar	acteristics
	of <i>pn</i> junction - MOS Structure - Accumulation Operating Mode- Depletion Operating Mode- Inversion Operating Mode, C-V Plots of an MOS Structure.														
Unit-II															VICES -
															ansistor –
	÷									ensors	and sen	sor of co	ell m	eta	abolism –
	-	addressal													
Unit III															arrays as
		•				: com	npute	er, Pro	opertie	es of L	INA and	its pote	ntial	ap	plications
T T •4 TT 7	-	lecular e			-		DIC			T 3.64			T 1		1 1 1
Unit IV															ochemical
											-			_	olarizable
	electrodes, electrode behavior of circuit methods. Body surface recording electrode array, Microelectrodes for electric stimulation of tissues.														
Unit V												NON -	Biolo	207	y of the
															threshold
		-	•			-									s, Silicon
															& Huxley
	and Eq	quivalen	t Circu	uits.											-
Reference and															
Andreas Offe		erand R	oss R	Rinal	ldi.	(200	19).	Nanc	obioele	ectron	ics-for e	electroni	cs, b	vio	ology and
medici		1	. .	,		1 007)		, ·	. 1	,	11.14	<i>c</i>	,	,	
Chad A. Mirki	nand Ch <i>ations</i> .	nristof N	nemey	yer N	VI. (2	2007)). Nai	inobic	otechn	ology	II More	Concept	s and		
Christ of Niem		and Cha	d A M	Mirki	in ('	2004	N_{c}	anohi	otechi	nology	Concen	ts Annlia	ratio	ns	and
Perspe	•	und Chu		VIII KI		2004	·). 110	anoor	oreeni	101089	concept	<i>s, nppu</i>	Junor	15	una
David S. Good		004). Bio	onanot	techr	nolo	ogy.									
Jason J Davis.						0.	onic i	interf	ace.						
Lagothetidisan									iotech	nolog	у.				
OdedShoseyov															
Outcomes		ccessful	-												
		nderstand											la a1		4
		asic kno	-	-		semi	lcond	ducto	r inte	ertacin	ig with	biomo	lecule	es	towards
		oelectror				of	orga	anic	and b	viomol	ecules i	n devel	onino	τ.	molecular
		ectronics												5	moleculal
			, u111111	i ut iZ				0405 1	or mu	1110111	15 00115 0	10 10000			

	III Semester
Course code	CHEMICAL SENSORS Credits: 3 Hours: 3
Objectives	□ To provide a solid foundation for students to understand principles and application of
	 modern chemical sensor technology. To provide the student with the ability to operate with existing sensor systems and
	transducers, as well as to design new sensors, based on application of "smart
	materials".
Unit -I	GENERAL PRINCIPLES, DEFINITIONS AND CONCEPTS -Introduction to
	principles of chemical sensing; Signal transduction; Physico-chemical and biological
	transducers; Sensor types and technologies. Terminology and working vocabulary; Main
	technical definitions: calibration, selectivity, sensitivity, reproducibility, detection limits,
	response time; Problems and trade-offs.
Unit-II	PHYSICO-CHEMICAL SENSORS ANDTRANSDUCERS - Thermal sensors;
	Electrochemical sensors (amperometric, potentiometric, conductimetric); Semiconductor
	transducers (ISFET, ENFET); Optical transducers (absorption, fluorescence,
	bio/chemiluminescence, SPR); Piezoelectric and acoustic wave transducers; Limitations
	& problems to be addressed.
Unit III	BIOCHEMICAL SENSORS - a. Enzymes; Oligonucleotides and Nucleic Acids;
	Lipids (Langmuir-Blodgett bilayers, Phospholipids, Liposomes); Membrane receptors
	and transporters; Immunoreceptors; Limitations & problems.
	b. Catalytic biosensors: mono-enzyme electrodes; bi-enzyme electrodes: enzyme
	sequence electrodes and enzyme competition electrodes.
	c. Affinity-based biosensors; Inhibition-based biosensors; Cell-based biosensors;
TT •4 TT7	Biochips and biosensor arrays; Problems and limitations.
Unit IV	SENSOR ENGINEERING - Methods for sensors fabrication: self-assembled
	monolayers, screen printing, photolithography, microcontact printing, MEMS.
TT:4 X7	Engineering concepts for mass production. APPLICATION - Environmental monitoring; Technological process control; Food
Unit V	quality control; Clinical chemistry; Test-strips for glucose monitoring; Implantable
	sensors for long-term monitoring; Forensic science benefits; Problems & limitations.
Reference and	Text Books: -
	andNeetiSadana, (2011). Handbook of Biosensors and Biosensor Kinetics, Elsevier B.V.
v	rdam, The Netherlands. (ISBN: 978-0-444-53262-6)
	lfer And Florian Schubert, (1992). "Biosensors" Techniques And Instrumentation In
	tical Chemistry -Volume 11, Elsevier Science Publishers B.V. Amsterdam, The
•	rlands, (ISBN 0-444-98783-5).
Janata J. (2	009). Principles of Chemical Sensors. Springer.
Jeong-Yeol	Yoon, (2016). Introduction to Biosensors: From Electric Circuits to Immunosensors,
	ger Int. Publishers (ISBN: 978-3-319-27411-9).
	. Cooper and CassA.E.G. (2004). Biosensors: a practical approach, Oxford University
•	(ISBN 0-19- 9-63846- 2).
	ar Khanna, (2011). Nanosensors: Physical, Chemical, and Biological, CRC Press. (ISBN:
	-439-82712-3).
Outcomes	On successful completion of the course, a student will be able to
	 Understand the working principles of various sensors. Develop generation of a division mental applications.
	Develop sensors for clinical, food, environmental applications.

III Semester								
Course code	THIN FILM SCIENCE AND TECHNOLOGY Credits: 3 Hours: 3							
Objectives	□ To introduce about mechanical pumps, production of high vacuum and thin film							
	coating unit							
	□ To expose the various methods for preparation of thin films.							
	To make the students understand the characterization methods used for thickness							
	measurement.							
	To make the students gain knowledge on the nucleation theories and thin film							
	structures.							
TT •4 T	To impact knowledge on the various properties of thin films.							
Unit -I	GROWTH AND STRUCTURE OF FILMS -Introduction to thin films and							
	applications - General features - Nucleation theories - Post-nucleation growth - Thin							
	film structures- Structural defects.							
Unit-II	THICKNESS MEASUREMENT AND MONITORING - Multiple beam interference							
	- quartz crystal - ellipsometric - stylus techniques. Characterization: X-ray diffraction -							
	electron microscopy - high and low energy electron diffraction.							
Unit III	PREPARATION METHODS – Physical methods: thermal evaporation - vapour							
	sources - Wire, crucible and electron beam gun - sputtering mechanism and methods -							
	Pulsed laser deposition (PLD), photochemical deposition (PCD) - Chemical methods:							
	chemical vapour deposition and chemical solution deposition techniques - spray							
	pyrolysis - laser ablation.							
Unit IV	PROPERTIES OF THIN FILMS - Optical - reflection and anti-reflection coatings -							
	interference filters - thin film solar cells - electrophotography. Electrical and dielectric							
	behaviourof thin films - components - thin film diode and transistor - strain gauges							
	gas sensors. Anisotropy in magnetic films - domains in films - computer memories -							
	superconducting thin films - SQUID - mechanical properties: testing methods - adhesion							
	- surface and tribological coatings.							
Unit V	HIGH VACUUM PRODUCTION- Mechanical pumps - Diffusion pump -							
	measurement of vacuum - gauges - production of ultra high vacuum - thin film vacuum							
	coating unit.							
Reference and	Text Books: -							
Berry R.W,	Hall P.MandHarris M.T. (1968). Thin Film Technology. Von Nostrand.							
	(1979). Thin Film Phenomena. Krieger Pub Co.							
ChopraK.L.	andKaur I. (2011). Thin Film Device Applications. Springer-Verlag New York Inc.							
	. (1963) Physics of Thin Films: Volumes 1 -12. Academic Press.							
	(2017). Thin films Fundamentals, New Age International (P) Ltd.							
	andGlangR. (Eds.). (1970). <i>Handbook of Thin film Technology</i> . McGraw- Hill. 001). <i>Materials Science of Thin Films</i> . Academic Press.							
	(1995). Thin-Film Deposition: Principles and Practice. McGraw-Hill.							
Outcomes	The students would have gained knowledge on production of high vacuum and							
	thin film coating unit.							
	The students would apply the various methods for the preparation of thin films.							
	The students know the methods of characterization of thin films and thickness							
	measurement.							
	Gained knowledge on nucleation theories and thin film structures.							
	Gained knowledge on properties of thin films.							

III Semester										
Course code	NANOMATERIALS PREPARATION AND	Credits: 3	Hours: 3							
	CHARACTERIZATION									
Objectives	□ To introduce the basic aspects of preparation of nanomater	ials and their	related							
	characterization techniques.									
	□ To study the synthesis and purification Single walled and N	Multi walled	Nanotubes							
	(SWNT and MWNT).									
	 To impart the concepts behind 1 dimensional nanowires and nanofibers. To insulate characterization of metericle with various techniques. 									
	 To inculcate characterization of materials with various techniques. To inculcate characterization of materials with various techniques. 									
	To inspire the knowledge of nanodevices for magnetic stora	<u> </u>								
Unit -I	BASIC PROPERTIES OF NANOPARTICLES -Size eff	•	•							
	nanoparticles - particle size - particle shape - melting point, surfacetension, wettability -									
	specific surface area and pore size – Reason for change in optic	cal properties	s, electrical							
Unit-II	properties, and mechanical properties – advantages. NANOTUBES - Single walled and Multi walled Nanotubes	(SWNT and	MW/NIT)							
01111-11										
	synthesis and purification - synthesis of carbon nanotubes by py discharge method – CVD - nanotube properties – Nanowires –	•	•							
	of nanowires –VLS mechanism.	methods of	preparation							
		d anida na								
Unit III		NANOWIRES AND NANOFIBERS – Semiconductor and oxide nanowires –								
	preparation –solvothermal – electrochemical –PVD –Pulse laser deposition – template									
	method (qualitative)- nanofibers –electro spinning technique.									
Unit IV	CHARACTERIZATION - FESEM - near-field Scanning Opti									
	resolution Transmission Electron Microscopy (HRTEM)- Absorption and emission									
	spectra - PL spectrum - single nanoparticle characterization	-	capacitance							
	microscopy - capillary electrophoresis- laser induced fluorescene									
Unit V	NANODEVICES - Magnetic storage: - magnetic quantum									
	magnetic date storage - high density quantized magnetic disks - 1	v								
	MRAMS - MTJs using nanoscale tunneling junctions - Millip	ede for stora	ge – nano-							
Defenence and	material sensors.									
Reference and	W. (Editor). (1997). Carbon nanotubes: preparation and properties	as CPC Pros								
	A.S. (Editor). (1997). Nanomaterials Synthesis, properties and app									
	ishing, UK.	niculons. 10	1							
	Nalwa (Editor). (2000). Hand book of Nanostructured Materials	and Technold	2gv. Vol.1-							
Ű	cademic Press, USA.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	Nalwa (Editor). (2002). Nanostructured materials and nanotechn	ology. Acade	emic Press,							
USA		02								
Masuo Ho	sokawa, Kiyoshi Nogi, Makio Naito andToyokazu Yokoyama. (20	007). Nanopa	rticle							
Tech	nology Handbook. Elsevier Publishers.									
Zhon Ling	Wang. (2000). Characterization of nanophase materials. Wiley-V		GmbH.							
Outcomes	Familiarize the properties of nanoparticles and its advantage	ges.								
	The students apply ideas on enlightenment of Nanowires.									
	Gain the idea of ID nanostructures.									
	The students will be able to crack its application.									
	The students will understand the principle involved in prep									
1	cnaracterization of nanostructures and fabrication of nanodevi	characterization of nanostructures and fabrication of nanodevice.								

]	III Semes	ter				
Course code			CERA	MIC MA	TERIALS		Credits: 3	Hours: 3	
Objectives		o expose th	e students t	o various	processing	techniques u	sed for cerami	ic	
	materials.								
		To introduce	the student	s to struct	tural cerami	cs and famili	arize them wi	th their	
		properties.							
							ceramics, ma	Ignetic	
		eramics, sup		0					
					¥ 1	of refractori		(
	 To make the students understand about various glass forming processes, types of glass and their applications. 								
	-					<u> </u>			
Unit -I				-	· –		on, spray dry	-	
	drying, sol-gel, CVD – milling techniques – forming – die pressing, slip casting, injection moulding, doctor blade processing – sintering techniques – standard pressure								
	sintering, hot pressing, HIP, reaction bonded sintering, microwave sintering – surface								
		ng technique							
Unit-II	STRU	CTURAL (CERAMIC	S - Oxid	le ceramics	– zirconia,	alumina, silic	ca, mullite,	
	magnes	sia andtitan	ia – carbio	les – sili	icon carbid	e, boron ca	rbide, tungste	en carbide,	
	titanium carbide - nitrides - silicon nitride, boron nitride, titanium nitride, borides,								
	silicides	es, - sialon –	bio cerami	cs.					
Unit III	ELECT	TRONIC (CERAMIC	S– Cera	mic insulat	tors and ca	pacitors – fe	erroelectric	
	ceramic	cs – bariur	n titanate,	PZT, PI	ZT materia	als- propert	ies and appli	ications of	
	electron	nic ceramics	s - magneti	c ceramic	s – spinel t	ferrites, zinc	ferrites - app	olications -	
	garnets	- supercon	ducting cera	amics – v	aristors – oz	kides and not	n-oxide varist	orsand fuel	
	cells.								
Unit IV							refractories		
							arbide based a		
			– Fusion	cast ref	ractories –	ceramic fil	bers- high to	emperature	
	applicat								
Unit V							ass transition		
							tion in glass,		
	U		silica glass	, laser gla	usses, fiber g	glasses, optic	al glasses and	non-oxide	
	glasses.								
Reference and				6		1.7.7	11 7 1		
						pman and Ha			
	· ,	0			1	n and Steel I	nstitute, Lond	on.	
Lewis M.H.						ianaa			
ReedJ.S. (20				0	•		Duccessius	nd Has in	
	. W.&Lee 1. CRC Pr		s). Modern	Ceramic I	zngineering	: Properties,	Processing a	na Ose in	
Outcomes	1		na coursa ti	ha student	0				
Jucomes		ompleting th				techniques	they have stud	lied	
		•	· · ·			· ·	nic materials a		
		lications.	gamen Kill	wieuge OI	i various sti	uctural cordi			
	· ·		known the ·	annlicatio	ns of electro	nic ceramico	s and magnetic	c ceramics	
							nd fuel cells.	e cerannes	
						s and their ap			
			-	-		-	pes of glasses	and their	
		lications.	iiiiiui wittli	, arrous gr	uss for ming	inctious, ty	pes of glasses	und then	
	appi	nearrons.							

	III Semester									
Course code	PHYSICAL METALLURGY	Credits: 3	Hours: 3							
Objectives	To introduce the concepts of phase diagrams.									
Ū	To impact knowledge about iron carbon phase equilibrium	n diagram and	alloys.							
	To expose the students to various heat treatment processe	s those are em	ployed.							
	□ To make the students to understand about various phase transformations.									
	□ To introduce various engineering alloys and their applications.									
Unit -I	PHASE DIAGRAMS -Composition and classification of pig iron and cast iron – iron									
	ores - manufacture of wrought iron and steel - The phase rule - Types of Binary									
	Diagrams,- invariant reactions- eutectic, eutectoid, peritecticandperitectoid reactions -									
	Thermodynamics, Solution theory - free energy composition curves - Experimental									
	determination of equilibrium diagram-grain size analysis, grain size measurement -									
	effect of grain size on properties of metals and alloys.									
Unit-II	SOLID SOLUTION - Types of solid solution - solid so	lution factors	governing							
	substitutional solubility –Hume-Rothery rules- intermediate pha	ases -solid solu	tion alloys							
	substitutional solubility –Hume-Rothery rules- intermediate phases -solid solution alloys –Vegards law – Lever rule - mechanical mixtures Iron-Carbon equilibrium diagram –									
	Aluminum alloys – Copper alloys – Effect of alloying elements	-	C							
Unit III	HEAT TREATMENT – Recovery, recrystallisationand grain		tv							
	changes, annealing twins, textures in cold worked and annealed									
	CCT diagrams – heat-treatment processes – annealing, normalis	•	U							
	tempering – baths used in heat treatment – hardenability – Jominy's end quench test –									
	martempering and austempering – case hardening – induction, flame, laser - carburising,									
	cyaniding, nitriding, carbo nitriding.		U,							
Unit IV	PHASE TRANSFORMATIONS - Types of phase changes	s – Driving f	orces, N-G							
	aspects, diffusion in solids – solidification – pearlitic trans	-								
	transformations – kinetics of transformation - precipitation and									
Unit V	ENGINEERING ALLOYS - Low carbon steels – mild steels -									
	steels - tool materials - stainless steels - super alloys - light all									
	alloys – applications.	•	•							
Reference and	Text Books: -									
AvnerS.H. (2	019). Introduction to Physical Metallurgy. Mc Graw Hill Educa	tion.								
GuyA.G. and	HrenJ. (1984). Elements of Physical Metallurgy. Oxford Univ. H	Press.								
	005). Engineering Physical Metallurgy. CBS Publishers & Distr	ibutors.								
	1995). Light Alloys. Metallurgy and Materials Science.									
U	(2015). Physical Metallurgy: Principles and Practice. PHI Learn	ning Private Li	mited,							
	Delhi.									
	d-Hill. (2008). Physical Metallurgy Principles. Affiliated East-V									
	2014). Structural Properties of Engineering Alloys, McGraw Hi	ll Education.								
Outcomes	The students would be able to construct phase diagrams.	1								
	The students would have gained knowledge on Iron-Carb	on phase equil	ıbrium							
	diagram. \Box Students would be able to enclus the various best treatments	4								
	Students would be able to apply the various heat treatmer	•								
	Students would gain knowledge on phase transformations									
	□ To analyze the various properties of engineering alloys as	nd apply them.								

			Ι	II Semeste	er					
Course code		SUP	ERCONDU	UCTING N	IATERIALS	AND	Credits: 3	Hours: 3		
			AI	PPLICATI	ONS					
Objectives		To introduce	the basic ex	xperimenta	aspects of th	e superco	nductivity.			
					terials and its					
	□ To make the students to understand the experimental studies of superconducting									
	materials.									
		 To inspire the theoretical aspects of superconductivity. To progress the students with various application in superconductivity. 								
Unit -I					Zero electrica					
					icity – optical					
	·			•	estruction of	-	•••			
	•	•		•	als – superco	÷	behaviour un	der high		
	-				Josephson tu					
Unit-II	SUPE	RCONDUC	TING MA	TERIALS	- Elemental s	upercond	uctors -super	conducting		
	compo	ounds and its	alloys – A-J	I5 compour	nds - chevral	phase con	npounds.			
Unit III	HIGH	I TEMPERA	TURE SU	PERCON	DUCTORS -	- La-Ba-C	u-O, Y-Ba-cu	ı-O, Bi-Sr-		
	Ca-Cu-	Ca-Cu-O and new systems and their crystal structures – Experimental studies on the								
	new materials – organic superconductors –fullerenes.									
Unit IV	THEORETICAL ASPECTS - Isotope effect – BCS theory – Role of electrons and									
		phonons – applications of electron band structure results to calculate electron-phonon								
	coupling constant McMillan's formula – GLAG theory– recent theories on high Tc materials, Coherence length, expression for critical temperature Tc, critical field Hc,									
	critical	l current Jc –	heavy ferm	nion superc	onductivity.	-				
Unit V	APPL	ICATIONS	- Super	conducting	magnets	– power	generators	s, motors,		
					smission – J					
	sensors	s – SQUIDS	-SLUGS -	magnetica	lly leviated tra	ains – con	nputer storage	e elements.		
Reference and										
		-	-	-	roduction. Ox		-			
		D.T (Eds.). (1988). Supe	erconductiv	ity and its Ap	plications	. Elsevier Sci	ence		
Publis	•				_			_		
				-	rconductors-	Advances	in research o	and		
		Nova Scientif			1		1 1 1			
				-	conductivity. S	South Asia	a publishers.			
		(1086). Theory of				dom II:1a				
					onductivity. A			Dalh		
	1 · · · ·				CBS Publishe			Denni.		
Outcomes		I he students Gain knowle			sic concepts of materials	л superco	nductivity.			
					uperconductir	na materio	10			
					erconductivit	•	.13.			
					l various tech		application of	f the		
		perconductivi		anderstally		inorogreat	"Pproducion o	1 110		
	sup		ity.							

	IV Semester								
Course code	NANO-BIOELECTRONICS Credits: 3 Hours: 3								
Objectives	□ To provide basic knowledge in the interface between chemistry, physics and								
	biology on the nanostructural level with a focus on biotechnological usage.								
Unit -I	INTERPHASE SYSTEMS -Lab-on-a-Chip Devices- Microcontact Printing of Proteins Protein based Nanostructures Congrig Approaches to Programmed Assembly								
	Proteins-Protein-based Nanostructures-Genetic Approaches to Programmed Assembly-								
	Nanoscale Magnetic Iron Minerals in Bacteria.								
Unit-II	DNA-BASED NANOSTRUCTURES - DNA-templated Electronics-Biomimetic								
	Fabrication of DNA-based Metallic Nanowires and Networks-DNA–Gold-Nanoparticle								
	Conjugates-Nanoparticles as Non-Viral Transfection Agents.								
Unit III	SELF ASSEMBLY AND NANOSTRUCTURES – Self-Assembled Artificial								
	Transmembrane Ion Channels: Self-Assembling Nanostructures from Coiled-Coil								
	Peptides-Proteins and Nanoparticles: Covalent and Noncovalent Conjugates-Self- Assembling DNA Nanostructures for Patterned Molecular Assembly.								
Unit IV	NANOSTRUCTURES FOR ANALYTICS - Nanoparticles for Electrochemical								
Unit I v	Bioassays-Luminescent Semiconductor Quantum Dots in Biology-Nanowire and								
	Nanotube based Biomolecular Sensors for In-Vitro Diagnosis of Cancer and other								
	Diseases-Bionanoarrays.								
Unit V	NANOSTRUCTURES FOR MEDICINAL APPLICATIONS - Biological Barriers to								
	Nanocarrier-Mediated Delivery of Therapeutic and Imaging Agents-Adapting Emerging								
	Techniques from the Electronics Industry for the Generation of Shape-Specific,								
	Functionalized Carriers for Applications in Nanomedicine-Poly(amidoamine)								
	Dendrimer-Based Multifunctional Nanoparticles.								
Reference and									
	irkinand Christof M. Niemeye (2007). Nanobiotechnology II More Concepts and								
11	rations.								
	Niemeyer and Chad A. Mirkin (2004). Nanobiotechnology Concepts, Applications and								
-	ectives. odsell. (2004). Bionanotechnology.								
	andStergios (2012). Nanomedicine andNanobiotechnology.								
-	ov, Ilan Levy (2008). <i>Nanobotechnology</i> .								
Outcomes	On successful completion of the course, a student will be able to								
	Account for interaction of biomolecules with surfaces of different chemical and								
	physical species.								
	Suggest methods for the design of enzyme reactors and other bioconjugates on								
	surfaces and second carriers, and explain the carrier's influence on the activity of the								
	biomolecule.								
	Analyse applications within the field of bioelectronics and account for the basic								
	principles they are based on.								
	Use basic principles of microfluidics to solve biotechnical and bioanalytical								
	problems								

	IV Semester									
Course code		HIGH PRESSURE SCIENCE AND	Credits: 3	Hours: 3						
		TECHNOLOGY								
Objectives		To introduce the aspects of High pressure science and the	technology.							
		Γο expertise the measurements of high pressure.								
		□ To familiarize high pressure devices for various properties and applications.								
		□ To inspire physical properties of high pressure and spectroscopy studies.								
TI		To insight mechanical properties under pressure.								
Unit -I		METHODS OF PRODUCING HIGH PRESSURE -Definition of pressure –								
	-	staticity – generation of static pressure, pressure uni nann Anvil – Multi-anvil devices – Diamond anvil cell.	ts – piston	cynnder –						
TI:4 TT	Ũ		- Secondar							
Unit-II		SUREMENT OF HIGH PRESSURE - Primary gauge								
		and demerits – Thermocouple pressure gauge – Resista	nce gauge –	fixed point						
	-	re scale – Ruby fluorescence – Equation of state.	ICATIONS	W D						
Unit III		PRESSURE DEVICES FOR VARIOUS APPL		•						
		diffraction, Neutron diffraction - Optical studies - Electrical studies - Magnetic studies								
	-	– High and low temperature applications – Ultra high pressure anvil devices.								
Unit IV		HIGH PRESSURE PHYSICAL PROPERTIES - PVT Relation in fluids -								
	-	Compressibility of solids - properties of gases under pressure - Melting phenomena -								
		ty - thermoemf - thermal conductivity. Electrical conduct								
	-	phonons superconductivity - Electronic structure of metals and semiconductors - NMR								
		agnetic properties. Liquid crystals – spectroscopy stu	idies –Infrare	ed, Raman						
	•	l absorption – EXAFS.								
Unit V		IANICAL PROPERTIES UNDER PRESSURE								
		rements – mechanical properties – Tension and compress								
	-	static extrusion. Material synthesis – Superhard material	ls – Diamono	1 - Oxides						
Reference and		ner compounds – water jet.								
		31). The Physics of High Pressure. G. Bell and SONS Ltd	London							
-		High pressure Experimental methods. New York.	., London.							
		970). Mechanical Behaviourof Materials under Pressure.	Elsevier Pub	lishing						
	td., New									
	-	rteam. (1980). High Pressure Science and Technology, Vo	ol.Iand II. Per	gamon						
	Oxford.									
Outcomes		Establish the operation of anvil and Multi-anvil devices.								
		Crack the gauge operations.								
		Design various anvil device applications.								
		Apply ideas of Electronic structure of metals and semicone								
		After completing this course the students will be able t								
	cor	cepts of the high pressure and various technologica	l application	s of high						
	pre	ssure.								

	IV Semester							
Course code	OPTICAL MATERIALS	Credits: 3 Hours: 3						
Objectives	□ To explain the optical properties of conducting materials.							
	□ To make the students to understand the optical properties of							
	□ To elucidate the concepts of optical properties in insulating							
	□ To elucidate the notion of optical gain the different types of lasers.							
	□ To introduce the concept of nonlinear optical processes.							
Unit -I	OPTICAL PROPERTIES OF CONDUCTORS -Atomistic							
	plasma frequency - band structure in metals - density of states							
	coloration by means of small metal particles – optical properties of superconductors – photoacoustic absorption spectroscopy – differential reflection spectroscopy.							
		2.1						
Unit-II	OPTICAL PROPERTIES OF SEMICONDUCTORS - Free	<u> </u>						
	free electron model - band structure - impurity states and lattice	-						
	densities - absorption and photoluminescence - measurer							
	absorption, photoluminescence, differential reflection spectrose							
	and properties: Fabrication and growth - color - band gap energi							
Unit III	OPTICAL PROPERTIES OF INSULATORS – Propaga							
	insulators - reflection and transmission - optical attenuation	· · ·						
	refractometers - thin films - glasses, crystals and birefringen							
	electrochromic behavior - oxides, chalcogenides and halides - o	ptical plastics – sources						
	of color.							
Unit IV	OPTICAL GAIN AND LASERS - Spontaneous emission - 1	ine shapes - stimulated						
	emission and absorption – absorption and amplification – characteristics of lasers –							
	cavity dynamics – laser systems – semiconductor lasers: p-n junctions, homo and hetero							
	junction lasers.							
Unit V	NONLINEAR OPTICAL PROCESSES - Linear materials -							
	second-order optical nonlinearity - second-order susceptibility							
	harmonic generation - optical parametric oscillation - third							
	materials – photorefraction – z-scan measurement – third harmor	nic generation.						
Reference and								
	Sutter K. PretrePh. HulligerJ. FlorsheimerM. KaatzP. and Gunter	P.(1995). <i>Organic</i>						
	ear Optical Materials. Gordon and Breach Publishers.							
	nons and Kelly S. Potter. (2000). Optical Materials. Academic Pre-	SS.						
	eber. (2003). Handbook of Optical Materials. CRC Press.							
	1985). Optical Materials: An introduction to selection and application	ation. Marcel Dekker						
Inc.								
	2013). <i>Optical Materials and Applications</i> . CRC Press.							
Outcomes	After completion of this course, the students should able to							
	Explain the optical properties of conducting materials.							
	Understand the optical properties of semiconductors.							
	 Understand the optical properties in insulating materials. Understand the optical gain properties of materials and a 	functioning of different						
	Understand the optical gain properties of materials and types of lasers.	unctioning of unforchit						
	Explain different nonlinear optical processes.							
	Explain anterent noninteal optical processes.							

	IV Semester								
Course code	BIOSENSORS	Credits: 3	Hours: 3						
Objectives	During this course the learners will be acquiring the following	g knowledge,	skills and						
-	competences								
	Knowledge in basic requirements to fabricate a sensor for a give	en application.							
	To select a molecular recognition layer based on the target mole	cule.							
	Understand different methods for attaching recognition molecule on the sensor surface.								
	To identify the interaction between the surface attached molecu	le and target 1	nolecule in						
	the solution.								
	Understanding the working principles of electronic and optical s	ensor devices							
	Role of affinity sensors in disease diagnosis.								
	Utility of resistivity based sensors compared to other com								
Unit -I	BASICS OF BIOSENSORS-Biosensor – definition-Histori	· ·							
	characteristics - calibration, dynamic Range, signal to noise	, sensitivity,	selectivity,						
TT •4 TT	interference- examples - applications –Problems.		. 1						
Unit-II	TYPES OF TRANSDUCERS- Transducer – definiti	• •	- I ,						
	electrochemical, Electrochemical transducers (amperometric, potentiometric,								
TT •4 TTT	conductimetric); - thermal, Mass – piezoelectric – acoustic wave with examples.								
Unit III	BIORECOGNITION SYSTEMS – Enzymes; Microorganism based biosensor,								
	immobilization of microorganism - botanical biosensors-Biosensors using cultured cells- intact tissues-receptor elements.								
	*								
Unit IV	DNA ELECTRONIC APPLICATIONS- Molecular wires an								
	computer, molecular arrays as memory stores, DNA for molecular devices - molecules								
	between nanofabricated electrodes.		6 1						
Unit V	GLUCOSE SENSORS- Definition- Historical developments								
	sensing -types of glucose monitoring - invasive and non-in	vasive – sens	or market-						
	Indian status.								
Reference and									
	ass T. (2004). <i>Biosensors</i> . 3- Biotechnology Advances.	Duese							
•	 Cooper J. Cass A.E.G. (2004). <i>Biosensors</i>. Oxford University B.D. Turner A.P.F. (2003). <i>Advances in Biosensors</i>. Elsevier JAI. 	Press.							
	niA. Rogers K.R. (1998). Enzyme and Microbial Biosensors Ted	chniques and	Protocols						
	ana Press, Totowa, New Jersey.	inniques una l	Tolocois.						
	ZuH. Wang J. (2018). Electrochemical Sensors, Biosensors and	their Riomedi	cal						
U U	<i>cations</i> . Elsevier Science and Technology Books.	ineir Diomeui	Lui						
Outcomes	The students shall be familiar with Basic characteristics, class	ification imm	obilization						
Jucomo	methods for preparing a sensor with recent advancements								
	 Principles of electrochemical techniques and recent advance 	ements in glue	ose sensor.						
	DNA and immune sensing for disease diagnosis	Since in grade	ese sensor,						
	Applications of optical sensors in DNA, antibody and cells s	ensing							
	☐ Molecular affinity based sensing technology in DNA ar	-	ensing and						
	resistivity based sensing technology.		0						

	IV Semester								
Course code	COMPOSITE MATERIALS AND	Credits: 3	Hours: 3						
	STRUCTURES								
Objectives	To introduce about the properties of fibers and matrices.								
	To make the students to understand the interface region and	d their testing							
	 To impart knowledge on the fabrication techniques of composites. To expose the students to various micro and macro mechanics involved. 								
	To impart knowledge on the various mechanical properties								
Unit -I	FIBERS AND MATRICES -Types of composite materials								
	transfer - fibers - glass, boron, carbon, organic, ceramic and								
	strength of reinforcements – volume fraction and weight fraction- fiber packing								
	arrangements – long fibers – laminates, woven, braided and knitted fiber arrays – short								
	fibers - fiber orientation and length distributions - matrix mater	rials – polym	ers, metals						
	and ceramic matrices.								
Unit-II	INTERFACE REGION - Bonding mechanisms – ads								
	interdiffusionand chemical reaction, electrostatic attraction,								
	experimental measurements of bond strength - single fiber pull	-	-						
	down tests - three-point bend test - control of bond streng	-	0 0						
	toughness reducing coatings, diffusion barrier coatings, interfa	cial chemica	l reaction,						
	the interphase region.								
Unit III	FABRICATION – Polymer matrix composites – liquid resi								
	pressurized consolidation of resin pre-pregs, consolidation								
	compounds, injection mouldingof thermoplastics, hot press moul								
	metal composites – squeeze infiltration, stir casting, spray depos		•						
	and consolidation, diffusion bonding of foils, physical vapour deposition - ceramic								
	composites - powder based routes, reactive processing, layered ceramic composites,								
	carbon/carbon composites.								
Unit IV	MICROMECHANICS AND MACROMECHANICS - Predic								
	- micromechanical approach - Halpin Tsai equations - transvers								
	of load transfer from matrix to fiber – micromechanics – elastic c		n isotropic						
	material – elastic constants of a lamina – Analysis of laminated c	-							
Unit V	STRENGTH AND TOUGHNESS OF COMPOSITES - Faile								
	composites axial and transverse tensile failure, shear and compre								
	of laminates – fracture mechanics – contributions to work of frac	ture – sub-cri	tical crack						
D . f	growth – Applications of composite materials.								
Reference and	. BroutmanL.J.&ChandrashekharaK. (2012). Analysis and Perforn	ana of Fibra							
Ū.	posites. Wiley.	unce of ribre	;						
-	(2014). <i>Ceramic Matrix Composites</i> . Springer-Verlag New York In	nc							
	(2014). Composite Materials: Science and Engineering. Springer I								
	lyne T.W. (2008). An Introduction to Composite Materials. Cambr		ity Press.						
	2015). Mechanics of Composite Materials. Taylor and Francis.		ny 11000,						
	(2008). Fiber-Reinforced Composites: Materials, Manufacturing a	and Design. C	CRC Press.						
Boca F		0	,						
Outcomes	The students would have gained knowledge about various	fibers and ma	trices.						
	□ The students would gain knowledge about the interface reg								
	reactions.								
	\Box To apply the fabrication methods they have learnt.								
	Understood the micromechanics and macro mechanics invo								
	□ Learnt the various mechanical properties and applications of	of composites							

	IV Semester							
Course code	NUCLEAR PHYSICS AND REACTOR MATERIALS	Credits: 3	Hours: 3					
Objectives	To introduce the students to nuclear structure and radioad	tivity.						
0	To expose the students about nuclear models, exchange f		nentary					
	particles.		-					
	To make the students understand about nuclear fission, fusion and controlled							
	thermo nuclear reaction.							
	□ To make the students understand about neutron and react	or physics.						
	□ To impart knowledge on the reactor design, materials and	l radioactive w	aste					
	disposal.							
Unit -I	NUCLEAR STRUCTURE AND RADIOACTIVITY -Nuc	clear charge, 1	mass, spin,					
	magnetic moment, electric quadrupole moment, Binding ene							
	formula - mass parabola - applications - Radioactivity	- Soddy-Faja	ans law –					
	Successive disintegration – transient and secular equilibrium.							
Unit-II	NUCLEAR MODELS, FORCES AND ELEMENTARY PA							
	model - shell model-compound nucleus model - Breit-wigner							
	- ground state of deutron - exchange forces - n-p, p-p scatt	ering-spin dep	pendence –					
	classification of elementary particles - conservation laws -	- elementary	idea about					
	quarks, gluons and quantum chromodynamics.							
Unit III	NUCLEAR FISSION AND FUSION - Types of fission-distribution of fission							
	products – fissile and fertile materials – neutron emission							
	fission – Bohr – Wheeler theory – chain reaction – four fa		A					
	condition – fusion- energy released – stellar energy – controlled thermo nuclear reaction							
	– plasma confinement.							
Unit IV	NEUTRON AND REACTOR PHYSICS- Nuclear tran	smutation, Q) value –					
	exoenergic – endoenergic reactions – Nuclear cross section		-					
	classification of neutrons – themalisation – average logarith							
	neutron diffusion – Fermi age equation.							
Unit V	REACTOR DESIGN AND MATERIALS- Fuels, moderat	or coolants	shielding _					
	reactor size – radioactive waste disposal – radiation detection		•					
	badge – TLD pocket dosimetry – application of radio isotopes							
	radiation protection – units and dosage.		8,					
Reference and								
	36). Atomic Physics. Tata McGraw Hill, New Delhi.							
	. (1985). Principles of Nuclear Reactor Engineering. Van Nostra	nd Co. Inc., N	ew York.					
	dNigam B.P. (1985). Nuclear Physics. Wiley Easter, New Delhi							
	1998). Nuclear Physics. Himalaya Publishers, Bombay.							
Outcomes	The students will learn about nuclear structure and radioa	ctivity.						
	The students would have gained knowledge about nuclea		ange forces					
	and elementary particles.		C					
	The students would have understood about nuclear fissi	on, fusion and	l controlled					
	thermo nuclear reaction.							
	The students would have understood about neutron and r	eactor physics.						
	The students would learn about reactor design, materia							
	disposal.							

	IV Semester
Course code	SMART MATERIALS AND STRUCTURES Credits: 3 Hours: 3
Objectives	To introduce the students to various intelligent, structural and biocompatible
	material.
	 To introduce the concept of hybrid smart materials and structural systems. To make the students up dependent of alcostic production of alcostic.
	□ To make the students understand the principle, working and application of electro- rheological fluids.
	 To expose the students to industrial piezo-electric materials and their properties.
	 To impart knowledge on shape memory alloys, their properties and applications.
Unit -I	INTRODUCTION -Classification of materials and their uses – Intelligent /Smart
	materials – Evaluation of materials Science – Structural material – Functional materials
	– Polyfunctional materials – Generation of smart materials – Diverse areas of intelligent
	materials – Primitive functions of intelligent materials– Intelligent inherent in materials
	- Examples of intelligent materials, structural materials, Electrical materials, bio-
	compatible materials etc Intelligent biological materials - Biomimetics - Wolff's law
	- Technological applications of Intelligent materials.
Unit-II	SMART MATERIALS AND STRUCTURAL SYSTEMS - The principal ingredients
	of smart materials – Thermal materials – Sensing technologies – Micro sensors –
	Intelligent systems – Hybrid smart materials – An algorithm for synthesizing a smart
	material – Passive sensory smart structures–Reactive actuator based smart structures – Active sensing and reactive smart structures – Smart skins – Aero elastic tailoring of
	airfoils – Synthesis of future smart systems.
Unit III	ELECTRO-RHEOLOGICAL (FLUIDS) SMART MATERIALS – Suspensions and
	electro-rheological fluids – Bingham -body model – Newtonian viscosity and non-
	Newtonian viscosity – Principal characteristics of electro rheological fluids – The
	electro-rheological phenomenon – Charge migration mechanism for the dispersed phase
	– Electro-rheological fluid domain – Electrorheological fluid actuators – Electro-
	rheological fluid design parameter – Applications of Electro-rheolgoical fluids.
Unit IV	PIEZOELECTRIC SMART MATERIALS - Background - Electrostriction -
	Pyroelectricity - Piezoelectricity - Industrial piezoelectric materials- PZT - PVDF -
	PVDF film - Properties of commercial piezoelectric materials - Properties of
	piezoelectric film (explanation) - Smart materials featuring piezoelectric elements -
T T • 4 T T	smart composite laminate with embedded piezoelectric actuators – SAW filters.
Unit V	SHAPE – MEMORY SMART MATERIALS - Background on shape – memory
	alloys (SMA) Nickel – Titanium alloy (Nitinol) – Materials characteristics of Nitinol – Martensitic transformations – Austenitic transformations – Thermoelastic martensitic
	transformations – Cu based SMA, chiral materials – Applications of SMA – Continuum
	applications of SMA fastners – SMA fibers – reaction vessels, nuclear reactors,
	chemical plants, etc. – Micro robot actuated by SMA – SMA memorisation process-
	SMA blood clot filter – Impediments to applications of SMA – SMA plastics – primary
	molding – secondary molding – Potential applications of SMA plastics.
Reference and	
-	Melton K.N. StockelD. and WaymanC.M. (1990). Engineering aspects of Shape Memory
•	Butterworth – Heinemann.
	and Thompson B.S. (1992). <i>Smart Materials and Structures</i> . Chapman and Hall, London, Edition.
	(1989). <i>Smart Materials, Structures and Mathematical issues</i> . TechnomicPublising Co.,
USA.	(1969).Smart Materials, Structures and Mathematical issues. Technomici donsing Co.,
Outcomes	The students would gain knowledge on the intelligent structural and
Outcomes	The students would gain knowledge on the intelligent, structural and biocompatible materials.
	The students would learn the concepts of hybrid smart materials and structural
	systems.
	The students will understand the principle, working and application of electro-
	rheological fluids.
	The students would be able to implement the knowledge gained on industrial
	piezo-electric materials.
	The students would have gained knowledge on shape memory alloys, their
	properties and applications.

NON – MAJOR ELECTIVE

				1	ON -			ester										
Course code				ELE	CTRO	ONIC	CS F	FOR	DA	ILY	LIF	E		Cre	dits: 2		Hou	:s: 3
Objective	To provide basics of electrical and electronics home appliances																	
Unit -I	ELEC																	
		Human body - Electric shock and burn - Respiratory protection - Risk assessment and																
		management - Safety against over voltage, extra-low and residual voltages - Hazardous areas, Electrical insulation - Electrical fires, Arc flash - Safety issues with emerging																
	energy			msula	1011 -	- 110			nes,	AIC	masi	1 - 5a	ilety	y 155	ues wit	.11	emer	ging
Unit-II	0.		RICAL	ACCE	ESSO		S A	ND	EAF	тн	ING	- Swit	tche	- 24	holders	_	sock	ets _
			ose – p															
			ce - co															
	•		- SI spe	-			•	•					U					
Unit III		SMART ELECTRONICS- Historical Background of processor and Memory storage-																
		Smart Phone, TAB, Laptop, Kindle - LCD and LED TV - smart watch- Medical																
	diagnosis based on smart phone- Human-Computer Interaction.																	
Unit IV			Y DEV															
		ries-	Wet C	ell, Dry	y Cell	l- Alk	kalir	ne-Li	ithiu	m io	n –Fl	ow ba	tter	y- Sı	upercap	bac	itor-	Fuel
	Cell.										~				~			
Unit V	ENER																	
			lamps (– Solar		LED))- Gre	reen	Con	nputi	ing-F	tome	appli	anc	e- E	nergy e		icienc	cy in
Reference and				car.														
Albert Malvino				2007) F	Electro	onic	Prin	ncinl	es 7	th Ed	ition	McG	rau	/ Hill	I			
David A. Bell.															•			
Kishore, K. La														litior	1.			
MehtaV.K. (20	001).Prin	inci	ples of .	Electro	onics,	$6^{th} R$	Revis	sed E	Editio	on, S	. Cha	indand	1 Co	ompa	any.			
PadiyarK.R. U			0		v													
SzeS.M. (2008	8).Semic																	
Outcomes			amiliar															.1
			apable	of choo	osing	the r	rıght	t pro	ducts	s froi	m the	e host o	ot c	hoic	es avail	lab	le in	the
			harket	oncom		otrici	ity h		tine	rono	wohl	o on on	ou c	101180	oc ond	or	orau	
			ble to c fficient					у ор	ung	rene	wabl	e energ	gy s	sourc	les and	en	ergy	
		e	Incient	nome a	аррпа	ances	s.											

	I Semester								
Course code	FOOD CHEMISTRY	Credits: 2 Hours: 3							
Objectives	To enable the students to acquire knowledge on the mac	ro and micro constituents							
	of the food.								
	To know the structure and chemical characteristics of co								
	To demonstrate the knowledge of food chemistry and ap	plying, the principles and							
	concepts of chemistry as they apply to food systems.								
	To familiarize the student with the relationship between								
	To explain the rationale for certain food processes and p								
Unit -I	INTRODUCTION TO FOOD AND ITS PROPERT								
	Chemistry and structure, kinetics, Maillard reaction. Food	•							
	nutritional and functional aspects. Emulsifiers-role ofemulsifiers selection of emulsifier								
	based on hydrophilic and Lipophilic balance (HLB) and its								
	definition, chemical structure, gel formation, list of permi								
	application. Chemical and biochemical changes: changes occu	r in foods during different							
	processing.								
Unit-II	PROCESSING AND PRESERVATION - Scope and be								
	preservation. Preservation of foods by chemicals, antibodi								
	sugar. Principles of food freezing: freezing point of foods Ps	•							
	concentration, freeze drying, IQF. Nanotechnology: Principles								
	Hurdle technology: Types of preservation techniques and their principles, concept of burdle technology and its application								
Unit III	hurdle technology and its application. FLAVOURS AND COLOURING AGENTS – Chemistry of food flavor, definitions,								
	•								
	Flavourmatics /flavouring compounds, flavor retention-off flavoursand food taints.								
	Colour -Natural and synthetic food colours, their chemical structure, stability, permitted								
T T •4 T T 7	list of colours, usage levels and food application.								
Unit IV	WATER RELATIONS IN FOOD - Moisture in food: Structure								
	water in food and their specific function water activity and stal								
Unit V	FOOD ADDITIVES- Definitions, uses and functions of: Acid	•							
	chelating/sequestering agents, Antioxidants, Anti-caking agent	00							
	bleating agents and Bread improvers. Anti-microbial agents/ cl	lass I & II.							
Reference and									
	D., Grosch, W. & Schieberle, P. (2004) Food Chemistry 3rd Ed.	(translation of fifth							
	nan edition), Springer	1 Channington, Ash. Edition							
	an, S., Parkin, K. L., andFennema, O.R. (2008) Fennema's Food	Chemistry 4th Edition,							
	Press .M. (2018). <i>Principles of Food Chemistry 4rd Ed</i> . Aspen Publisl	hore							
	imar Chopra and Parmjit Singh Panesar, (2010). Food Chemistry								
	* Kaur and Barry H. Grump.(2010). <i>Fundamentals of Food Cher</i> fications.	nistry, Admizeet							
	K. Cheng, (2015). <i>Handbook of Food Chemistry</i> , Vol 1, Springer	·Reference							
Outcomes	Will know about the factors governing the food quality a								
	□ Will be able to name and describe the general chemical s	structures of the major							
	components of foods and selected minor components \Box Will some to know about the techniques involved in fee	d processing and							
	□ Will come to know about the techniques involved in foo	a processing and							
	preservation Will be acquitted with food additives and their function	in preservation							
	□ Will be familiarize with the nature of packed food from	-							
	will be familiarize with the nature of packed 1000 from	mausurar processes							

	II Semester		
Course code	NANOBIOSENSORS	Credits: 2 Hour	:s: 3
Objectives	 To understand basic characteristics of biosensors, nanoparti Synthetic methods of nanoparticles in presence of biologica Understanding important biorecognition elements in biosen To know electrical and optical techniques in biosensing. Biosensor applications in medical and food industries. 	l molecules.	
Unit -I	BASICS OF NANOBIOSENSORS -Basic concepts, Class Features of Biosensors – Sensitivity, Selectivity, Reproducibilit Detection Limit, Response time - types of nanobiosensors;. Nan hybrids, Nanoparticle for biosensing.	y, Portability, Stabi noparticle biomolect	ility, ule -
Unit-II	BIOSYNTHESIS OF NANOPARTICLES - Metal: Silver, oxide: cerium, titanium, iron and zinc oxide nanoparticles - s fungi, plant extracts, Biological applications of inorganic nanopa	ynthesis using bact	
Unit III	MOLECULAR RECOGNITION ELEMENTS IN NANOSE		
Unit IV	ELECTRICAL AND OPTICAL BIOSENSORS - Princt amperometric and Impedimetric biosensors; Glucose biosensor Principles – Absorbance, Chemi-luminescence - Fluoresce Colorimetric sensors.	rs - Optical Biosens	sors:
Unit V	NANOTECHNOLOGY AND ITS APPLICATION IN H INDUSTRY - Nanotechnology and food packaging, natural bio nanomaterials in food packaging applications, nanosensors, outst regulations, public perception. Nanotechnology in Agriculture, F delivery system, Insecticides using nanotechnology, Potential of	polymers, advantage anding issues, risks recision farming, Si	es of and
Reference and	Text Books: -		
	e, Jr., FrankJ.Owens.(2006). Introduction to Nanotechnology, Wile		
	Wiley Weinhim (2008). Nanostructured Materials in Electrochem	•	
	wa. Nanostructured Materials and Nanotechnology, Academic Pr	ess London USA,	
Concise		с : N	1
	ar, Zadeh Benjamin Fry. (2008). Nanotechnology Enabled Sensor, ge. (2014). Design and applications of Nanomaterials for Sensor, S		
	n, L. Chen, Jining, John Wiley.(2008). <i>Nanomedicine Design and a</i>		5.
	c Nanoparticles, Nanosensors and Nanosystems, New Jersey.	<i>sppweuwens</i> of	
0	ddard. Handbook of Nanoscience and Technology, CRC, Boca Ra	ton, 2 nd edition.	
Outcomes	Basic characteristics and methods of nanoparticles		
	□ Familiar with different green synthesis methods of m		
	using bacteria, fungi and plant extracts , different	types ofbiorecogn	ition
	elements		
	 Techniques based on electrical and optical properties for Applications of nanosensors in medical and food industr 		

Course codeGREEN CHEMISTRYCredits: 2Hours:Objectives □ To introduce the basic concept and principles of green chemistry for environmental management. □ □ □	3								
environmental management.									
□ To make the students know about green reagents and its importance to the									
environment									
To acquaint the student with green solvents and its impacts in green chemistry									
To familiarize the synthesis of materials using green methods									
To impart the knowledge on applications of green synthesis technology									
Unit -I PRINCIPLES OF GREEN CHEMISTRY -History of green chemistry and									
	sustainability- Prevention of waste/by-products - maximum incorporation of reactants in								
final product-Atom economy - Prevention/minimization of hazardous products	_								
Designing safer chemicals – optimizing reaction conditions.									
Unit-II GREEN REAGENTS AND CATALYSTS - Choice of starting materials – reager	ıts								
(Dimethyl carbonate, polymer supported reagents) – catalysts (microencapsulated Lew	vis								
acids, zeolites, basic catalysts polymer supported catalysts, introduction to biocatalysts).								
Unit III GREEN SOLVENTS – Aqueous phase reactions (Claisen rearrangement, Ald	ol								
condensation, wurtz reaction, reduction of carbon carbon double bond, oxidation									
amines into nitro compounds – Electrochemical synthesis (synthesis ofadiponitrile)									
Ionic liquids – reactions in acidic ionic liquids- reactions in neutral ionic liquid									
(hydrogenations, diels-Alder reactions, Heck reactions, O-alkylation and N-alkylatio	n,								
methylene insertion reactions.									
Unit IV GREEN SYNTHESES - Microwave induced green synthesis (Hoffmann Elimination	on								
and Oxidation of alcohols) - Ultra sound assisted green synthesis (Esterification									
Saponification and Cannizaro reaction) – Solid state green synthesis (Dehydration	of								
alcohols to alkenes, Grignard reaction)- Solid supported organic synthesis (Synthesis	of								
furans and pyrrole).									
Unit V APPLICATIONS OF GREEN SYNTHESIS - Introduction – synthesis of styrer	le,								
adipica acid, catechol, 3-Dehydroshikimic acid, methyl methacrylate, urethan									
Environmentally benign synthesis of aromatic amines - free radical bromination	_								
synthesis of ibuprofen and paracetamol.									
Reference and Text Books: -									
Ahluwalia V. K. (2012). Green Chemistry, Narsoa publishers.									
AhluwaliaV.K. andKidwaiM. (2004). New trends in Green Chemistry, Anamaya Publishers.									
Bela Torokand Timothy Dransfield, (2017). Green Chemistry, An Inclusive Approach, 1st									
Edition, Elsevier.									
Outcomes To be familiar with basic concepts of green chemistry and apply to them in									
various field.									
To recognize the catalytic reaction with green reagents and its importance. To									
identify available green solvents and apply them to various synthesis process									
To recognize the preparations of materials with green process and its application									
to the environment.									
To gain the knowledge of preparation of various drugs using green synthesis									
methods									
To be have the skills and technology towards green chemistry and apply in industry.									

Name Designation Address	 Dr. C. SEKAR Professor and Head Department of Bioelectronics & Biosensors Alagappa University Karaikudi – 630003 Tamil Nadu,INDIA
Phone	: +919442563637
Email	: Sekar2025@gmail.com

Educational qualification:

Ph.D. - Crystal Growth Centre, Anna University, Chennai.

- M.Sc. Pachaiyappa's College, University of Madras
- B.Sc. Sacred HeartCollege, University of Madras

Professional experience:

- Research 14 Years
- Teaching 21 Years

Area of Research:

- Materials Science: Metal oxide semiconductors, Carbon nanostructures, Biomaterials, Low dimensionalcuprates
- Sensors: Chemical Sensors, Biosensors for Medical, Food, Agricultural and EnvironmentalApplications

Honoursand Awards:

- International Centre for Theoretical Physics (ICTP)-Italy (Travel grant-2015)
- Alagappa Excellence Award for Research(2016-17)
- SERB-DST, Govt. of India (International Travel Support May2017)
- Best Poster Award –International Conference on Environmental Medicine, 10- 11thDecember 2017, Kaohsiung Medical University, Taiwan.
- Visiting Researcher, University of Messina, Italy (May-July2017)
- International Centre for Theoretical Physics (ICTP)-Italy (Special grant-2019)

Recent publications:

- MgNi₂O₃ nanoparticles as novel and versatile sensing material for non-enzymatic electrochemical sensing of glucose and conductometric determination of acetone.
- Nicotinamide adenine dinucleotide immobilized tungsten trioxide nanoparticles for simultaneous sensing of norepinephrine, melatonin and nicotine.
- SnO_2 - SnS_2 nanocomposite as electro-catalyst for simultaneous determination of depression biomarkers serotonin and tryptophan.
- Gamma Irradiated WO₃ Nanostructures for Electrochemical Sensing of Multiple Depression Biomarkers.
- Manganese Doped Hydroxyapatite Nanoparticles Based Enzyme-Less Electrochemical Sensor for Detecting Hydroquinone.

Total Publications: 149, Total Citation: 2137, h- index: 26, i10- index: 54

Name Designation Address	: Dr. G. RAVI : Professor and Head : Department of Physics Alagappa University Karaikudi – 630003 Tamil Nadu,INDIA
Phone	: +919443408720
Email	: raviganesa@rediffmail.com.

Educational qualification:

- Ph.D. Anna University, Chennai
- M.Phil. Anna University, Chennai
- M.Sc. Bharathidasan University
- B.Sc. Bharathidasan University

Professional experience:

- Research 27 Years
- Teaching 23 Years

Area of Research:

- Crystal growth of organic & inorganicmaterials
- Nano materials synthesis and Thin Films preparation for supercapacitors, Photocatalyticand sensorapplications
- Opto-electronics and E-O modulator–Devices

Honors and Awards:

- Visiting Professor, Shizuoka University, Japan, Aug-Nov. 2012
- Honorable Guest Professor, Shizuoka University, Japan, April2014
- Alagappa Excellence Award for Research (2015-2016), Alagappa University, 2016
- Honorable Guest Professor, Shizuoka University, Japan, April2016
- JSPS Invitation Fellowship, Japan, Nov.-Dec. 2016
- Appreciation Award, Alagappa University, Karaikudi, Feb. 2017
- Honorable Guest Professor, Shizuoka University, Japan, April 2018 17.
- Honorable Guest Professor, Shizuoka University, Japan, April2019

Recent publications:

- Synthesis of self-assembled micro/nano structured manganese carbonate for high performance, long lifespan asymmetric supercapacitors and investigation of atomic-level.
- Synthesis of $X_{3}(PO_{4})_{2}$ [X = Ni, Cu, Mn] Nanomaterials as an Efficient Electrode for Energy Storage Applications.
- Neutral and alkaline chemical environment dependent synthesis of Mn₃O₄ for oxygen evolution reaction (OER)
- Fabrication and electrochemical OER activity of Ag doped MoO₃ nanorods.
- Supercapacitor and OER activity of transition metal (Mo, Co, Cu) sulphides.

Total Publications: 295, Total Citation: 3434, h- index: 31, i10- index: 91

Name Designation Address	: Dr. K.Sankaranarayanan : Professor : Department of Physics Alagappa University Karaikudi – 630003
Phone Email	Tamil Nadu,INDIA : +91 9865493229 : hhrsankar@yahoo.com

Educational qualification:

- Ph.D. Alagappa University, Karaikudi
- •

M.Phil. – Madurai Kamaraj University, Madurai M.Sc. – Madurai Kamaraj University, Madurai

Professional experience:

- Research 26 Years
- Teaching 23 Years

Area of Research:

- MaterialsScience
- Crystallization kinetics of organic and inorganicmaterials.
- Unidirectional growth of bulk organic and inorganiccrystals.
- III-V Semiconductor materials synthesis and growth.

Honoursand Awards:

• Indo-China Bilateral Students Exchange Fellowship(1992-93)

by Ministry of Human Resource Development, Govt. of India, New Delhi.

- Young Scientist Fellowship (1995-96) by Tamil Nadu State Council for Scienceand Technology, Govt. of Tamil Nadu, Chennai,India.
- Prof.P.Ramasamy National Award for Crystal Growth (2005) by IndianAssociation for Crystal Growth, Anna University, Chennai.
- Best Researcher Cash Award (2005-2006), Alagappa University, Karaikudi
- Visiting Professor (*April, 2010-July, 2010*) Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan.
- Visiting Scientist (19-10-2014 to 24-10-2014) Hebei SemiconductorResearch Institute, Shijiazhuang,China.

Recent publications:

- Electrochemical, structural, compositional and optical properties of Cuprous Selenide thin films.
- Unidirectional growth of pure and composite t-stilbene single crystals for scintillator applications.
- Sol-gel mediated microwave synthesis of pure, La andZr doped SnS_2 nanoflowers an efficient photocatalyst for the degradation of methylene blue.
- Electrochemical synthesis, single-crystal growth, physicochemical and dielectric studies oftetrabromobisphenol A.
- Crystal growth and characterization of 1, 3, 5-triphenylbenzene organic scintillator crystal.

Total Publications: 83, Total Citation: 1201, h- index: 19, i10- index: 34

Name Designation Address	: Dr. V. Dharuman : Assistant Professor : Department ofBioeletronics& Biosensors Alagappa University Karaikudi – 630003 Tamil Nadu,INDIA
Phone	: +919865679897
Email	: dharumanudhay@yahoo.com

Educational qualification:

- Ph.D. University of Madras
- •
- •
- •

B.Ed. – University of Madras M.Sc. – University of Madras B.Sc. - University of Madras

Professional experience:

- Research 15 Years
- Teaching 9 Years

Area of Research:

• Chemistry/Electrochemistry/ Diabetic, cancer biosensors development using, DNA, antibody (immunosensors) and neurological disorder sensors

Honoursand Awards:

- 1. Best poster award, National Conference on Futuristic Materials (NCFM-2017), March 27 & 28th, 2017 Alagappa University, Karaikudi-630003
- 2. Best poster award, International conference on recent advance in materials and chemical sciences (ICRAMCS-2015), Dec.14-15, 2015, Gandhigram Rural Institute
- 3. Alagappa Excellence Award for Research2015-2016
- 4. Best poster award, Indo-Japan workshop on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation (IJWBME 2013), 13- 15th December 2013, Delhi Technological University, Delhi,India
- 5. Young Biomedical scientist Research Fellowship by Indian Council of Medical Research, India, for the year2012-2013
- 6. Article Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing, Biosens. Bioelectr., 31 (2012) 406-412. Ranked 16th on the TOP 25 articles in the Journal of Biosensors and Bioelectronics, March2012
- 7. Research Scientist, AIST, Japan, Oct.2006 March2007
- 8. Brain Korea Post doctoral research fellowship, Decmber2004

Recent publications:

- Physicochemical and electrochemical analysis of rare earth metal doped BTO perovskite thin films.
- Carbon dots stabilized silver-lipid nano hybrids for sensitive label free DNA detection.
- Carbon dots stabilized silver–lipid nano hybrids for sensitive label free DNA detection.
- Single step sol-gel synthesized Mn2O3-TiO2 decorated graphene for the rapid and selective ultra sensitive electrochemical sensing of dopamine.
- Self-powered polymer-metal oxide hybrid solar cell for non-enzymatic potentiometric sensing of bilirubin.

Total Publications: 58, Total Citation: 947, h- index: 18, i10- index: 24

Name Designation Address	: Dr. J. Wilson : Assistant Professor : Department ofBioeletronics& Biosensors Alagappa University Karaikudi – 630003 Tamil Nadu,INDIA
Phone	: +919488260016
Email	: wilson.j2008@yahoo.com

Educational qualification:

- Ph.D. Alagappa University Karaikudi.
- Bharathidasan University Trichy

B.Sc. - Alagappa University Karaikudi

M.Sc. -St.Joseph's College

,

Professional experience:

- Research 14 Years
- Teaching –8Years

Area of Research:

• Conducting polymers, Metal oxides, Carbon based materials, Biosensors, lithium batteries

Honoursand Awards:

• Nature India has published my paper doi:10.1038/nindia.2016.27 Published online 24 February 2016

Recent publications:

- Sensitive voltammetric sensor based on silver dendrites decorated polythiophene nanocomposite: Selective determination of L-Tryptophan.
- Size controllable, pH triggered reduction of bovine serum albumin and its adsorption behavior with SnO₂/SnS₂ quantum dots for biosensing application.
- Solvothermal synthesis of magnetically separable reduced graphene oxide/Fe₃O₄ hybrid nanocomposites with enhanced photocatalytic properties.
- Mesoporous nickel oxide nanostructures: Influences of crystalline defects and morphological features on mediator free electrochemical monosaccharide sensor application.
- Non Enzymatic L Tyrosine Detection Based on PEDOT/ZrO₂ /rGO Composite.

Total Publications: 37, Total Citation: 919, h- index: 13, i10- index: 19

Name Designation Address	 Prof. P. Ravindran Professor Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur-610 101.
Phone	: +91-948905426, +91-8300178007
Email	: raviphy@cutn.ac.in,

Educational qualification:

- Ph.D. Anna University, Madras
- ٠
- •

M.Sc. – Anna University, Madras

B.Sc. - Madurai Kamaraj University

Professional experience:

- Research 20 Years
- Teaching –16 Years

Area of Research:

- Nanophase materials
- MOFs and other nano/micro/measo-porous materials
- Hydrogen Storage & Battery Materials
- Solar Energy Materials including Tranparent conducting oxides
- Defects in semiconductors
- Linear, nonlinear optical properties and other Excited State properties
- Magneto-optical and Magneto-caloric materials.
- Magnetic properties, Magnetic anisotropy, Spin, Charge and Orbital ordering
- Multi-ferroicand other multifunctional materials
- Structural Phase Stability and High Pressure studies

Recent publications:

- Comment on the paper titled "Two-dimensional Sc₂C: A reversible and high capacity hydrogen storage material predicted by first-principles calculations" by Hu et al.
- Role of W-site substitution on mechanical and electronic properties of cubic tungsten carbide.
- Thermal, electronic and thermoelectric properties of TiNiSnandTiCoSb based quaternary half Heusler alloys obtained from ab initio calculations.
- Giant Magnetoelectric Coupling in Multiferroic PbTi_{1-x}V_xO₃ from Density Functional Calculations.
- Earth-abundant nontoxic direct band gap semiconductors for photovoltaic applications by ab-initio simulations.

Total Publications: 233, Total Citation: 8002, h- index: 44, i10- index: 113

Name: Prof. K. ChinnakaliDesignation: ProfessorAddress: Plot No.28Ram Nagar First Street - North ExtnVelachery
Chennai 600042Phone: +91-9444548969Email: kali@annauniv.edu

Educational qualification:

- Ph.D. in X-ray Crystallography from Faculty of Science and Humanities, CEG Campus, Anna University (1988 1991).
- .M.Phill. in PHYSICS, CEG Campus, Anna University (1987 1988)
- M.Sc. in Biophysics, Department of Crystallography and Biophysics, University of Madras
- B.Sc. in PHYSICS, SRMV Arts College, Coimbatore, University of Madras (1980 1983).

Area of Research:

- X-Ray Crystallography
- Materials science

Recent publications:

- 1, 3-Dicyclohexyl-1-(4-nitrobenzoyl) urea.
- 3-Benzyl-7-bromo-9-phenyl-2-tosyl-2, 3, 3a, 4, 9, 9a-hexahydro-1H-pyrrolo [3, 4-b] quinolone.
- 3-Benzyl-7-chloro-9-phenyl-2-tosyl-2, 3, 3a, 4, 9, 9a-hexahydro-1H-pyrrolo [3, 4-b] quinolone.
- 3-Benzyl-9-phenyl-2-tosyl-2, 3, 3a, 4, 9, 9a-hexahydro-1H-pyrrolo [3, 4-b] quinolone.
- 3-Benzyl-7-methoxy-9-phenyl-2-tosyl-2, 3, 3a, 4, 9, 9a-hexahydro-1H-pyrrolo [3, 4-b] quinolone.

Total Publications: 210, Total Citation: 1541, h- index: 19, i10- index: 45

Name Designation Address	 Dr. S. ARUMUGAM Professor Centre for High Pressure Research Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli - 620 024, Tamil Nadu, India.
Phone	: +91-95009 10310, 94436 45254
Email	: sarumugam1963@yahoo.com

Educational qualification:

- Ph.D. Anna University, Chennai.
- M.Phil,Bharathidasan University, Tiruchirappalli.
- M.Sc. Sri Pushpam College (Bharathidasan University), Poondi, Thanjavur.
- B.Sc. Voorhees College (University of Madras), Vellore.

Professional experience:

- Research 30 years
- Teaching –25 Years

Honoursand Awards:

- Best Poster Presentation award, Indian Academy of Science, India (2018)
- MRSI Medal Lectures Award, Materials Research Society of India, India (2018).
- Tamil Nadu Scientist Award in Physical Sciences, Tamil Nadu State Council for Science and Technology, India (2014).
- Visiting Professorship, Institute of Solid State Physics, University of Tokyo, Japan (2016).
- GCOE Fellowship, Institute of Solid State Physics, University of Tokyo, Japan (2008).
- TWAS-UNESCO Associate Scheme at Centres of Excellence in South Third World Academy of Sciences, C/O ICTP, Italy (2009-2012).
- OCU fellowship, Osaka city university, Japan (2006).
- INSA Exchange Fellowship, DFG, Germany (2005).
- Post-Doctoral Fellowship, JSPS, Japan (2002-2003).
- Prof. M. A. Ittyachen Award, CTMS 2001, Mahatma Gandhi University, Kottayam, India (2001).
- Post-Doctoral Fellowship, JSPS, Japan (1998-2000).
- Young Scientist Fellowship, TSNCT, Chennai, Tamil Nadu, India (1996-1997).
- Proficiency Prize award, A.V.V.M Sri Pushpam College, Thanjavur, India (1986).

Recent publications:

- Influence of ERTA on magnetocaloric properties of Sr doped BaFe₁₂O₁₉ thin films.
- Complex magnetic structure and magnetocapacitance response in a non-oxide NiF₂system .
- Effect of Multi-functional Hierarchical Flower-like CoS Nanostructure on its Electrochemical Behavior for Room Temperature Supercapacitor and DSSC Applications and Low Temperature Superconducting application.
- Enhancement of Superconducting properties and flux pinning mechanism on Cr_{0.0005}NbSe₂ Single crystal Under hydrostatic pressure.
- Electrical resistivity, magnetic and magneto-caloric studies on perovskite manganites $Nd_{1-x}Cd_xMnO_3$ (x = 0 and 0.1) polycrystals.

Total Publications: 218, Total Citation: 1641, h- index: 21, i10- index: 50

Name: Dr. Giovanni NeriDesignation: ProfessorAddress: Department of EngineeringUniversity of Messina.Italy.Email: gneri@unime.it

Educational qualification:

• M. S Chemistry – University of Messina, Italy.

Area of Research:

• Catalysis, Gas sensors, Biosensors

Honoursand Awards

- Awarded a grant by Samsung SAIT Global Research Outreach program for the project Smart sensors for breath analysis.
- Invited researcher/professor at the College of Chemical Engineering, The University of Michigan (1991 and 1996), at University of Alagappa (2013 and 2019) and Indian Institute of Technology (IIT) Indore (2016).
- Associate Editor-in-Chief of Chemosensors, member of the Editorial Board of Sensors and Academic Editor for the "Gas Sensors" topical collection.

Recent publications:

- High performance Gd-doped γ -Fe₂O₃ based acetone sensor.
- High Performance CO Gas Sensor Based on ZnO Nanoparticles.
- Development of ZnO-based sensors for fuel cell cars equipped with ethanol steam-reformer for onboard hydrogen production.
- Electrochemical Sensing of Serotonin by a Modified MnO₂-Graphene Electrode.
- MgNi₂O₃ nanoparticles as novel and versatile sensing material for non-enzymatic electrochemical sensing of glucose and conductometric determination of acetone.

Total Publications: 476, Total Citation: 11366, h- index: 59, i10- I index: 196

Name	: Dr. Subramainan Tamil Selvan
Designation	: Professor
Address	: Translational Neuroscience Laboratory,
	Lee Kong Chian School of Medicine,
	Nanyang Technological University,
	59 Nanyang Drive, Singapore 636921
Email	: subra.selvan@ntu.edu.sg

Area of Research:

Nanomedicine, Bioimaging, Nanoparticle, Quantum dots, Energy.

Recent publications:

- Mushroom-Derived Carbon Dots for Toxic Metal Ion Detection and as Antibacterial and Anticancer Agents.
- Bimodality Probes of Gd Enhanced T1-Weighted Magnetic Resonance/Optical Imaging.
- Silica-Coated Mn-Doped ZnS Nanocrystals for Cancer Theranostics.
- Nanotechnology-Based Diagnostics and Therapy for Pathogen-Related Infections in the CNS.
- Experimental and Theoretical Structural Characterization of Cu–Au Tripods for Photothermal Anticancer Therapy.

Total Publications: 89, Total Citation: 2094, h- index: 34, i10- I index: 58

Name	: Dr. Nanda Gunawardhana
Designation	: Professor
Address	: Sri Lanka Technological Campus
	New Kandy Rd,
	Malabe 10115,
	Sri Lanka
Email	: nandhag@sltc.ac.ik

Area of Research:

Capacitors, Gas sensors, Nanomaterials, LIBs.

Honoursand Awards:

• Director, Sri Lanka Technological Campus.

Recent publications:

- Seed-Assisted Growth of TiO₂ Nanowires by Thermal Oxidation for Chemical Gas Sensing.
- TiO₂Microparticles/Reduced Graphene Oxide Composite as Anode Material for Lithium Ion Battery
- Gold functionalized MoO₃ nano flakes for gas sensing applications.
- Fabrication of Hollow Co₃O₄ Nanospheresand Their Nanocomposites of CNT and rGO as High-Performance Anodes for Lithium-Ion Batteries.
- UV Light Assisted NO₂Sensing by SnO₂/Graphene Oxide Composite.

Total Publications: 47, Total Citation: 936, h- index: 19, i10- I index: 25

Name : Pratima R. Solanki Designation : Assistant Professor Address : Special Centre for Nanoscience Jawaharlal Nehru University, New Delhi, 110 067. Email : partima@mail.jnu.ac.in

Area of Research:

Nano Biosensors, Nano bio-interface.

Recent publications:

- One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions.
- Non-enzymatic detection of Glucose using a capacitive nanobiosensor based on PVA capped CuO synthesized via co-precipitation route.
- A highly sensitive label-free amperometric biosensor for norfloxacin detection based on chitosanyttria nanocomposite.
- Studies on Carbon quantum dots embedded Iron Oxide Nanoparticles and their Electrochemical response.
- Molecularly Imprinted Polymer-based Novel Electrochemical Sensor for the Selective Detection of Aldicarb.

Total Publications: 165, Total Citation: 6027, h- index: 43, i10- I index: 95

Name: Dr. N. LakshminarasimhanDesignation: ScientistAddress: Functional materials divisionCSIR-Central Electrochemical ResearchInstitute, India.Email: laksnarasimhan@cecri.res.in

Educational qualification:

- Ph.D. Indian Institute of Technology (IIT) Madras.
- M. Sc. Muthurangam Govt. Arts College, Vellore, affiliated to Univ. of Madras.
- B.Sc. –Muthurangam Govt. Arts College, Vellore, affiliated to Univ. of Madras

Area of Research:

• Solid State Chemistry and Materials Science, Photofunctional Materials - Phosphors, Photocatalysts, Transparent Conductors, Materials for Energy Conversion and Storage, Structure-Morphology-Property Correlations in Nanomaterials andPhotofunctional Materials

Honoursand Awards:

- CSIR-Young Scientist Award in Chemical Sciences for 2012
- Listed in Marquis Who's Who in the World for 2010 and 2013
- University of Madras IV rank holder (1999) in Master's degree

Recent publications:

- The effects of morphology, microstructure and mixed-valent states of MnO₂ on the oxygen evolution reaction activity in alkaline anion exchange membrane water electrolysis.
- Reversible Thermochromismof Nickel (II) Complexes and Single-Crystal-to-Single-Crystal Transformation.
- Electronic, thermal and magneto-transport properties of the half-Heusler, DyPdBi.
- Structure-magnetic property relations in FeNbO₄ polymorphs: A spin glass perspective.
- Oxo-bridged trinuclearandtetranuclear manganese complexes supported with nitrogen donor ligands: syntheses, structures and properties.

Total Publications: 45, Total Citation: 1407, h- index: 21, i10- I index: 25

Name: Dr. J. MathiyarasuDesignation: Principal ScientistAddress: Biosensors divisionCSIR-Central Electrochemical Research
Institute, India.Email: almathi@cecri.res.in

Area of Research:

Electrochemical biosensors.

Honoursand Awards:

• BOYSCAST Fellowship (2007-08) Department of Science and Technology, New Delhi

Recent publications:

- Amperometric determination of Myo-inositol using a glassy carbon electrode modified with nanostructured copper sulfide.
- Magnetosome-anti-Salmonella antibody complex based biosensor for the detection of Salmonella typhimurium.
- Electrochemical Detection of Alloxan on Reduced Graphene oxide Modified Glassy Carbon Electrode.
- Disintegration of Flower-Like MoS2 to Limply Allied Layers on Spherical Nanoporous TiO2: Enhanced Visible-Light Photocatalytic Degradation of Methylene Blue.
- MOF assisted synthesis of new porous nickel phosphate nanorods as an advanced electrode material for energy storage application.

Total Publications: 91, Total Citation: 2434, h- index: 26 i10- I index: 48

Name	: Dr. J. JEYAKANTHAN
Designation	: Professor
Address	: Department of Bioinformatics Alagappa University Karaikudi – 630 003 Tamil Nadu, INDIA
Phone	: +91 9789809245
Email	: jjkanthan@gmail.com

Educational qualification:

- Ph.D. University of Madras, Chennai.
- M. Phil M. K. University.
- M.Sc. M. K University.

Area of Research:

• Structural Biology and Bio-Computing, Small and Macro Molecule X-ray Crystallography

Honoursand Awards:

- UGC Research Award (2016)
- Fellow of Academy of Sciences, Chennai (2015)
- Post Doctoral Fellowship DST, DBT and IRPHA (2000-2003)
- IUCr Young Scientist (1999)
- Young Scientist Travel Award by DST and UNESCO (1999)
- Research Fellow award by CSIR (1997)

Recent publications:

- Structural Insights on Binding Mechanism of CAD Complexes (CPSase, ATCaseandDHOase).
- Conformational changes in glutaminyl-tRNAsynthetases upon binding of the substrates and analogs using molecular docking and molecular dynamics approaches.
- In silico characterization of the NiRAN domain of RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV2.
- IMRPS: Inserted and Modified Residues in Protein Structures. A database.
- Conformational insights into the inhibitory mechanism of phyto-compounds against Src kinase family members implicated in psoriasis.

Total Publications: 150, Total Citation: 1339, h- index: 18, i10- index: 38

Name	: Dr.K.Gurunathan
Designation	: Professor
Address	: Department of Nanoscience and Technology
	Alagappa University
	Karaikudi – 630 003
	Tamil Nadu, INDIA
Phone	: +91 9487412949
Email	: kgnathan27@rediffmail.com,
	gurukar50@gmail.com

Educational qualification:

- Ph.D. University of Madras, Chennai.
- M. Sc. M. K. University, Madurai.
- B. Sc. M. K University, Madurai.

Professional experience:

- Research 27 years
- Teaching 12 years

Area of Research:

• Hydrogen Energy, PhotocatalysisandPhotoelectrochemistry, Nano (Quantum dots &Core-Shell Solar cells), Flexible (Plastic) Solar cells, Nanomaterials for Electronics and Power sources, Conducting Polymers and their r-GO-MO-Nanocomposites, Nano Magnetism (Core-Shell Magnetic materials for MRI), Nano Toxicology & Phytochemical synthesis of Nanomaterials

Honoursand Awards:

- Awardee of BOYSCAST Fellowship (DST, New Delhi) for the year 1999-2000.
- Awardee of Brain Pool scientist by Brain Pool program of KOFTS, South Korea, during July 2005-June 2006.
- Awardee of "RastriyaNirman Rattan" by Economic Growth Society of India, Delhi
- Awardee of "National Health leadership Award" by Health and Education Development Association, Delhi, 2012
- Listed in Marquis Who's who in Science and Engineering published by Marquis, USA, 2006-2007 and Who's Who in the World published by the same on upcoming 2009(26th Edn.)
- Awardee Institute RA in CECRI, Karaikudi, (1995-1997).
- Direct CSIR-SRF from CSIR, India, 1991-1993
- Awardee of Student Membership from Electronic Division of Electrochemical Soc, Inc, USA, 1991-1994

Recent publications:

- Investigation of NH3 gas sensing behavior of intercalated PPy–GO–WO3 hybrid nanocomposite at room temperature.
- Composites of π -stacking materials with low-dimensional metal oxide nanoblends for photocatalytic hydrogen production.
- Inspection of room temperature hydrogen sensing property of nanostructured polypyrrole/polyaniline hetero-junctions synthesized by one-pot interfacial polymerization.
- Surface bound nanostructures of ternary r-GO/Mn3O4/V2O5 system for room temperature selectivity of hydrogen gas.
- Size controllable, pH triggered reduction of bovine serum albumin and its adsorption behavior with SnO2/SnS2 quantum dots for biosensing application.

Total Publications: 65, Total Citation: 1248, h- index: 11, i10- index: 13

Name Designation Address	 : Dr. Jitendra Kumar : Scientific officer. : Nuclear agriculture and Biotechnology division Bhabha Atomic Research Centre, Mumbai.
Email	: jkumar@barc.gov.in

Educational qualification

Ph. D – University of Mumbai. M. Sc – Indian Agricultural Research Institute B. Sc - Banaras Hindu University.

Area of Research:

Biosensors.

Recent publications:

- Enhanced electromechanics of morphology-immobilized co-continuous polymer blend/carbon nanotube high-range piezoresistive sensor.
- Carbon nanotube functionalization and radiation induced enhancements in the sensitivity of standalonechemiresistors for sensing volatile organic compounds.
- Network density tailored standalone-flexible fluorocarbon elastomer/nanocarbon black chemiresistors for 2-propanone field detection.
- Biodegradation of methyl parathion and its application in biosensors.
- Mechanical hysteresis, interface and filler–filler structural breakdowns in ethylene vinyl acetateorganoclay composites internally lubricated via radiolytically degraded PTFE.

Total Publications: 25, Total Citation: 486, h- index: 10, i10- I index: 11

Name: Dr. N. SudhanDesignation: Assistant ProfessorAddress: Department of ChemistryThiyagarajar CollegeMadurai, India.Email: sudhamadhu@gmail.com

Educational qualification:

- Ph.D. Alagappa University, Karaikudi.
- M. Sc. Thiyagarajar College, Madurai.
- B.Sc. –Thiyagarajar College, Madurai.

Area of Research:

Chemo-Biosensors, DNA Microarray, Gold nanorods

Recent publications:

- Monitoring of Chemical Risk Factors For Sudden Infant Death Syndrome(SIDS) by Hydroxyapatite-Graphene-MWCNT Composite-Based Sensors.
- Manganese Doped Hydroxyapatite Nanoparticles Based Enzyme-Less Electrochemical Sensor for Detecting Hydroquinone.
- Electrochemical detection of estrus specific phenolic compound p-cresol to assess the reproductive phase of certain farm animals.
- Investigations on the effect of gamma-ray irradiation on the gas sensing properties of SnO₂ nanoparticles.
- Electrochemical detection of mercury using biosynthesized hydroxyapatite nanoparticles modified glassy carbon electrodes without preconcentration.

Total Publications: 8, Total Citation: 91, h- index: 4, i10- I index: 4